Customizing and Editing Graphs
Table Of Contents

Customizing Graphs ... 5
Symbols, Lines, Bars... 5
Axes, Ticks, Reference Lines.. 94
Titles, Footnotes, and Data Labels.. 153
Graph Size, Background, Borders, Legends.. 173
Multiple Graphs .. 193
Fitted Lines and Distributions... 217
Subset Data, Missing Values, and Frequency Data... 235

Graph Editing Tools .. 241
Graph Editing Overview... 241
Editor Menu (When Graph Window is Active).. 241
Brush Graphs ... 242
Select Graph Items.. 248
Crosshairs ... 250
Plant Flag ... 251
Add Items to Graph .. 254
Panel Graphs.. 264
Individual Graph Options .. 268
Layout Tool.. 271
Copy Command Language.. 272
Duplicate Graph ... 274
Make Similar Graph ... 275
Graph Annotation .. 276
Update Graphs .. 279
Zoom ... 282
Graph Toolbars.. 282

Embedded Graph Editor ... 343
Embedded Graph Editor Overview.. 343
Embedded Graph Editor Toolbar ... 343
Embedded Graph Editor Menu Items... 344
To create an editable copy of a graph ... 344
To create an uneditable copy of a graph .. 344
To edit a copied graph in an outside application .. 344
Index .. 345
Customizing Graphs

Symbols, Lines, Bars...

Data Display Overview
For each graph, you can represent the data with one or more data displays, such as symbols, lines, bars, and areas. After creating the graph, you can:

- Change the attributes, such as size, color, and fill pattern of a data display (see Editing Data Display Overview).
- Add data displays (see Adding Graph Elements).

The illustrations below provide a sample of the data displays available.
Customizing and Editing Graphs

Data Display Type

<table>
<thead>
<tr>
<th>Graph</th>
<th>Symbols</th>
<th>Connect Line</th>
<th>Project Lines</th>
<th>Area</th>
<th>Bar</th>
<th>Interval Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scatterplot</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Matrix Plot</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Marginal Plot</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histogram</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Dotplot</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability Plot</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empirical CDF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boxplot</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval Plot</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Individual Value Plot</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Bar Chart</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Time Series Plot</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area Graph</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contour Plot</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D Scatterplot</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D Surface Plot</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data display types that are unique to one graph include:
- Box – boxplot
- Contour lines – contour plot
- Dots – dotplot
- Slice – pie chart
- Surface – 3D surface plot

Creation

Data View Overview

Use the Data View functions to:
- Change the default data display, which include symbols, connect lines, project lines, and areas. For details on the data display options, see Data Display Overview.
- Fit a lowess line, regression model, or distribution to the data. For details on the data-fitting procedures, see Data Fits Overview.
Note To access the data display and data fitting functions:
- For probability plots and empirical cdf graphs, click Distribution in the graph dialog box.
- For other graphs, click Data View in the graph dialog box.

Scatterplot, Matrix Plot

Scatterplot, Matrix Plot – Data View – Data Display
... > Data View > Data Display
Use to represent the data with one or more data display types, including symbols, connect lines, project lines, and areas. After creating a graph, you can:
- Change the data display attributes (see Editing Data Display Overview).
- Add or remove data display types (see Adding Graph Elements).

Dialog box items
Data Display
- Symbols: Check to represent each data point with a symbol.
- Connect line: Check to connect the data points.
- Project lines: Check to display lines that project from each data point to its base.
- Area: Check to shade the area below the data points to their base.

To change the data display
1 In the graph dialog box, click Data View.
2 Under Data Display, check one or more of the following:
 - Symbols to represent each data point with a symbol.
 - Connect line to connect the data points.
 - Project lines to display lines that project from each data point to its base.
 - Area to shade the area below the data points to their base.
3 Click OK in each dialog box.

Examples of scatterplot data display
You can represent the data with symbols, connect lines, project lines, and areas. You can also fit a lowess smoother and regression line to the data. In the Example of a simple scatterplot, you examine the relationship between voltage remaining in your camera batteries immediately after a flash and the length of time required for a battery to be ready to support another flash. You want to customize the data display.

Note Similar data display functions are available for matrix plots.

Symbols (default) and project lines
1 Open the worksheet BATTERIES.MTW.
2 Choose Graph > Scatterplot.
3 Choose With Groups, then click OK.
4 Under Y variables, enter FlashRecov. Under X variables, enter VoltsAfter.
5 In Categorical variables for grouping (0-3), enter Formulation.
6 Click Data View.
7 Check Project lines.
8 Click OK in each dialog box.
Grouping variable
1. To recall the last dialog box, press [Ctrl]+[E].
2. Click Data View.
3. Uncheck Project lines.
4. Check Connect line.
5. Click OK in each dialog box.

Histogram
Histogram – Data View – Data Display
... > Data View > Data Display
Use to represent the data with one or more data display types, including bars, symbols, project lines, and areas. After creating a graph, you can:
- Change the data display attributes (see Editing Data Display Overview).
- Add or remove data display types (see Adding Graph Elements).

Dialog box items
Data Display
Bars: Check to display bars that join each data value to its base. By default, the height of each bar is equal to the frequency of the interval it represents.
Symbols: Check to represent each data value with a symbol.
Project lines: Check to display lines that project from each data point to its base.
Area: Check to draw a histogram with an outline of the bars (only visible if you uncheck Bars).

To change the data display
1. In the graph dialog box, click Data View.
2. Click the Data Display tab.
3. Under Data Display, check one or more of the following:
 - Bars to display bars that join each data value to its base. By default, the height of each bar is equal to the frequency of the interval it represents.
 - Symbols to represent each data value with a symbol.
 - Project lines to display lines that project from each data point to its base.
 - Area to draw a histogram with an outline of the bars (only visible if you uncheck Bars).
4. Click OK in each dialog box.

Examples of histogram data display
You can represent the data with bars, symbols, project lines and areas. You can also fit a distribution and a lowess smoother to the data. In the Example of a simple histogram, you determine the amount of torque required to remove shampoo bottle caps. You want to customize the data display.
Bar (default) and symbols
1 Write the worksheet CAP.MTW.
2 Choose Graph > Histogram.
3 Choose Simple, then click OK.
4 In Graph variables, enter Torque.
5 Click Data View.
6 Check Bars and Symbols.
7 Click OK in each dialog box.

Area
1 To recall the last dialog box, press [Ctrl]+[E].
2 Click Data View.
3 Uncheck Bars and Symbols.
4 Check Area.
5 Click OK in each dialog box.

Note You can also use Editor > Add to add and remove data displays.

Dotplot

Dotplot – Data View – Data Display
... > Data View > Data Display
(Only available if a With Groups option was chosen from the dotplot gallery.)
Use to assign different data display attributes to each group based on categorical variable included in the plot. After creating a graph, you can change the dot attributes and the attribute grouping variables (see Editing Data Display Overview).

Dialog box items
Categorical variables for attribute assignment: Enter up to four columns of grouping variables to assign different attributes to each group of the categorical x-scale variables. You can only use categorical variables included in the dotplot.

To change the data display
(Only available if a With Groups option was chosen from the dotplot gallery.)
1 In the graph dialog box, click Data View.
2 In Categorical variables for attribute assignment, enter up to four columns of grouping variables to assign different attributes to each group of the categorical x-scale variables. You can only use categorical variables included in the dotplot.
3 Click OK in each dialog box.

Example of a dotplot with groups
You work in an auto factory and are having trouble with variability in the length of the camshafts you use. You want to see if the shafts provided by your two suppliers are comparable, so you measure length for a random sample of 100 shafts from each. Create a dotplot with groups to compare the samples from the two suppliers.
1 Open the worksheet CAMSHAFT2.MTW.
2 Choose Graph > Dotplot.
Customizing and Editing Graphs

3 Choose **One Y – With Groups**, then click **OK**.
4 In **Graph variables**, enter **Length**.
5 In **Categorical variables for grouping (1-4, outermost first)**, enter **Supplier**.
6 Click the **Data View** tab. In **Categorical variables for attribute assignment**, enter **Supplier**.
7 Click **OK** in each dialog box.

Graph window output

![Dotplot of Length vs Supplier](image)

Each symbol represents up to 3 observations.

Interpreting the results

The mean lengths of the camshafts from the two suppliers appear to be similar. However, there is a great deal more variability in the length of shafts provided by supplier B. You might investigate supplier B's process more carefully.

Tip

To see the bin range for a dot, hover your cursor over it.

Probability Plot

Probability Plot – Distribution – Data Display

... > **Distribution > Data Display**

Use to represent the data with one or more data display types, including symbols and a distribution fit. You can also hide the confidence intervals or change the confidence level. After creating a graph, you can:

- Change the data display attributes (see Editing Data Display Overview).
- Add or remove data display types (see Adding Graph Elements).

Dialog box items

Data Display

- **Both symbols and distribution fit**: Choose to represent each data value with a symbol and fit a distribution to the data.
- **Symbols only**: Check to represent each data value with a symbol.
- **Distribution fit only**: Choose to fit a distribution to the data.
- **Show confidence interval**: Check to display the confidence interval for the fitted distribution.
 - **Confidence level**: Enter a number between 0 and 100 to specify the confidence level. The default is 95%.

To change the data display

1 In the graph dialog box, click **Distribution**.
2 Click the **Data Display** tab.
3 Under **Data Display**, choose one of the following:
 - **Both symbols and distribution fit** to represent each data point with a symbol and fit a distribution to the data.
 - **Symbols only** to represent each data point with a symbol.
 - **Distribution fit only** to fit a distribution to the data.
4 To display a confidence interval for the fitted distribution, check **Show confidence interval**. If you want a confidence level other than 95%, type a value from 0 to 100 in **Confidence level**.

5 Click **OK** in each dialog box.

Example of multiple overlaid probability plots

You want to assess the efficacy of two coatings designed to reduce the flammability of fabrics. You randomly select 15 samples each of fabric with no coating, Coating A applied, and Coating B applied. Testers then hold each sample over an open flame for a fixed amount of time and measure the length of the burned portion.

You typically use the 87th percentile as a benchmark for such tests. Create probability plots for each treatment to determine if the data are fit well by normal distributions and to estimate the 87th percentile for each population.

1 Open the worksheet FLAMERTD.MTW.
2 Choose **Graph > Probability Plot**.
3 Choose **Multiple**, then click **OK**.
4 In **Graph variables**, enter Fabric - CoatingB.
5 Click **Scale**, then click the **Percentile Lines** tab.
6 Under **Percentile Lines**, choose **At Y values**, and enter 87.
7 Click the **Gridlines** tab, then uncheck all boxes. Click **OK**.
8 Click **Distribution**, then click the **Data Display** tab.
9 Uncheck **Show confidence interval**. Click **OK** in each dialog box.

Graph window output

![Probability Plot of Fabric, CoatingA, CoatingB](image)

Interpreting the results

The plotted points follow the fitted lines fairly closely, and the p-values for each Anderson-Darling test are greater than 0.10, suggesting that normal distributions fit these data fairly well. The estimated 87th percentiles for each population are:

- 4.21543 for the uncoated fabric
- 3.47944 for the fabric with Coating A
- 3.12936 for the fabric with Coating B

The order of variables in the output table is the same as that in the legend.

Coating A appears to reduce fabric burn, as evidenced by the leftward shift in the fitted line and the shorter mean burn length (3.013 as compared with 3.573 for the fabric with no coating). Coating A also appears to reduce the variability in the burn lengths, as evidenced by the steeper slope of the fitted line and the smaller standard deviation (0.4138 compared to 0.5700). However, appropriate tests would need to be conducted to confirm these observations.

Coating B may be more effective than Coating A. Coating B reduced the mean burn length to 2.727 and the standard deviation to 0.3575.
Empirical CDF Graph

Empirical CDF – Distribution – Data Display

Use to represent the data with one or more data display types, including connect lines and a distribution fit. After creating a graph, you can:

- Change the data display attributes (see Editing Data Display Overview).
- Add or remove data display types (see Adding Graph Elements).

Dialog box items

Data Display
- Both connect line and distribution fit: Choose to connect the data points and fit a distribution to the data.
- Connect line only: Choose to connect the data points.
- Distribution fit only: Choose to fit a distribution to the data.

To change the data display
1. In the graph dialog box, click Distribution.
2. Click the Data Display tab.
3. Under Data Display, choose one of the following:
 - Both connect line and distribution fit to connect the data points and fit a distribution to the data.
 - Connect line only to connect the data points.
 - Distribution fit only to fit a distribution to the data.
4. Click OK in each dialog box.

Example of multiple overlaid empirical cdf graphs

You want to assess the efficacy of two coatings designed to reduce the flammability of fabrics. You randomly select 15 samples each of fabric with no coating, Coating A applied, and Coating B applied. Testers then hold each sample over an open flame for a fixed amount of time and measure the length of the burned portion.

You typically use the 87th percentile as a benchmark for such tests. Create an empirical cdf graph to compare the fitted distributions for each treatment and estimate the 87th percentile for each population.

1. Open the worksheet FLAMERTD.MTW.
2. Choose Graph > Empirical CDF.
3. Choose Multiple, then click OK.
4. In Graph variables, enter Fabric - CoatingB.
5. Click Scale, then click the Percentile Lines tab.
6. Under Percentile Lines, choose At Y values, and enter 87. Click OK.
7. Click OK in each dialog box.
Interpreting the results
The stepped empirical cdf's follow the fitted lines fairly closely, suggesting that normal distributions fit these data fairly well. The estimated 87th percentiles for each population are:

- 4.215 for the uncoated fabric
- 3.479 for the fabric with Coating A
- 3.129 for the fabric with Coating B

The order of variables in the output table is the same as that in the legend.

Coating A appears to reduce fabric burn, as evidenced by the leftward shift in the fitted line and the shorter mean burn length (3.013 as compared with 3.573 for the fabric with no coating). Coating A also appears to reduce the variability in the burn lengths, as evidenced by the steeper slope of the fitted line and the smaller standard deviation (0.4138 compared to 0.5700). However, appropriate tests would need to be conducted to confirm these observations.

Coating B may be more effective than Coating A. Coating B reduced the mean burn length to 2.727 and the standard deviation to 0.3575.

Boxplot
Boxplot – Data View – Data Display
... > Data View > Data Display
Use to represent the data with one or more data display types, including boxes, symbols, and connect lines. After creating a graph, you can:

- Change the data display attributes (see Editing Data Display Overview).
- Add or remove data display types (see Adding Graph Elements).

Dialog box items
Data Display

Median confidence interval box: Check to display a confidence interval box, which shows the 95% (default) confidence interval for the median.

Interquartile range box: Check to display an interquartile range box (default). The box bottom is at the 25th percentile and box top at the 75th percentile.

Range box: Check to display a box that extends from the minimum data value to the maximum data value.

Outlier symbols: Check to represent each outlier with a symbol.

Individual symbols: Check to represent each data point with a symbol.

Median symbol: Check to represent each median with a symbol.

Median connect line: Check to connect the medians of boxplots (only visible if you have categorical variables in the boxplot).

Mean symbol: Check to represent each mean with a symbol.

Mean connect line: Check to connect the means of grouped plots (only visible if you have categorical variables in the boxplot).
Customizing and Editing Graphs

Categorical variables for attribute assignment: (Only available if a With Groups option was selected from the boxplot gallery.) Enter up to four columns of grouping variables to assign different attributes to each group of the categorical x-scale variables. You can only use categorical variables included in the boxplot.

To change the data display

1. In the graph dialog box, click **Data View**.
2. Under **Data Display**, check one or more of the following:
 - **Median confidence interval box** to display a confidence interval box, which shows the 95% (default) confidence interval for the median.
 - **Interquartile range box** to display an interquartile range box (default), with the box bottom at the 25th percentile and box top at the 75th percentile.
 - **Range box** to display a box that extends from the minimum data value to the maximum data value.
 - **Outlier symbols** to represent each outlier with a symbol.
 - **Individual symbols** to represent each data point with a symbol.
 - **Median symbol** to represent each median with a symbol.
 - **Median connect line** to connect the medians of grouped plots (only visible if you have categorical variables in the boxplot).
 - **Mean symbol** to represent each mean with a symbol.
 - **Mean connect line** to connect the means of grouped plots (only visible if you have categorical variables in the boxplot).
3. (Only available if a With Groups option was selected from the boxplot gallery.) In **Categorical variables for attribute assignment**, enter up to four columns of grouping variables to assign different attributes to each group of the categorical x-scale variables. You can only use categorical variables included in the boxplot.
4. Click **OK** in each dialog box.

Examples of boxplot data display

You can represent the data with different box types (interquartile range, median confidence interval, and range); outlier, individual, median and mean symbols; and median and mean connect lines. If you have grouping variables, you can assign different attributes to each group. In the Example of a boxplot with groups, you assess the durability of four experimental carpet products. You want to customize the data display.

Interquartile range box (default), median symbol, and median connect line

1. Open the worksheet CARPET.MTW.
2. Choose **Graph > Boxplot**.
3. Under **One Y**, choose **With Groups**, then click **OK**.
4. In **Graph Variables**, enter **Durability**.
5. In **Categorical variables (1-4)**, enter **Carpet**.
6. Click **Data View**.
7. Check **Outlier symbols**, **Median symbol**, and **Median connect line**.
8. Click **OK** in each dialog box.

Interquartile range box and individual symbol

1. To recall the last dialog box, press [Ctrl]+[E].
2. Click **Data View**.
3. Uncheck **Median symbol** and **Median connect line**.
4. Check **Individual symbols**.
5. Click **OK** in each dialog box.

Note You can also use **Editor > Add** to add and remove data displays.
Interquartile range box, mean symbol, and a categorical variable for attribute assignment

1. Press [Ctrl]+[E].
2. Click Data View.
3. Uncheck Individual symbols.
4. Check Mean symbol.
5. In Categorical variables for attribute assignment, enter Carpet.
6. Click OK in each dialog box.

Interval Plot, Individual Value Plot

Interval Plot, Individual Value Plot – Data View – Data Display

... > Data View > Data Display

Use to represent the data with one or more data display types, including bars, symbols, and connect lines. After creating a graph, you can:

- Change the data display attributes (see Editing Data Display Overview).
- Add or remove data display types (see Adding Graph Elements).

Dialog box items

Data Display

Interval bar: Check to display a confidence interval bar. The default confidence level is 95%.
Bar: Check to display bars that join each data value to its base.
Individual symbols: Check to represent each data point with a symbol.
Mean symbol: Check to represent each mean with a symbol.
Mean connect line: Check to connect the means of grouped plots (only visible if you have categorical variables in the plot).
Median symbol: Check to represent each median with a symbol.
Median connect line: Check to connect the medians of grouped plots (only visible if you have categorical variables in the plot).

Categorical variables for attribute assignment: (Only available if a With Groups option was selected from the graph gallery.) Enter up to four columns of grouping variables to assign different attributes to each group of the categorical x-scale variables. You can only use categorical variables included in the plot.

To change the data display

1. In the graph dialog box, click Data View.
2. Under Data Display, check one or more of the following:
 - Interval bar to display a confidence interval bar. The default confidence level is 95%.
 - Bar to display bars that join each data value to its base.
 - Individual symbols to represent each data value with a symbol.
 - Mean symbol to represent each mean with a symbol.
 - Mean connect line to connect the means of grouped plots (only visible if you have categorical variables in the plot).
 - Median symbol to represent each median with a symbol.
 - Median connect line to connect the medians of grouped plots (only visible if you have categorical variables in the plot).
3. (Only available if a With Groups option was selected from the graph gallery.) In Categorical variables for attribute assignment, enter up to four columns of grouping variables to assign different attributes to each group of the categorical x-scale variables. You can only use categorical variables included in the plot.
4. Click OK in each dialog box.
Customizing and Editing Graphs

Examples of interval plot data display
You can represent the data with interval bars, bars, symbols, and connect lines. If you have grouping variables, you can assign different attributes to each group. In the Example of an interval plot with groups, you assess the durability of four experimental carpet products. You want to customize the data display.

Interval bar, mean symbol, and mean connect line
1. Open the worksheet CARPET.MTW.
2. Choose Graph > Interval Plot.
3. Under One Y, choose With Groups. Click OK.
4. In Graph variables, enter Durability.
5. In Categorical variables for grouping (1-4, outermost first), enter Carpet.
6. Click Data View.
7. Check Mean connect line.
8. Click OK in each dialog box.

Interval bar, mean symbol, and individual symbols
1. To recall the last dialog box, press [Ctrl]+[E].
2. Click Data View.
3. Uncheck Mean connect line.
4. Check Individual symbols.
5. Click OK in each dialog box.

Note You can also use Editor > Add to add and remove data displays.

Interval bar, mean symbol and an additional categorical variable for attribute assignment
1. Press [Ctrl]+[E].
2. In Categorical variables for grouping (1-4, outermost first), add Composition.
3. Click Data View.
4. Uncheck Individual symbols.
5. In Categorical variables for attribute assignment, enter Composition.
6. Click OK in each dialog box.

Examples of individual value plot data display
You can represent the data with interval bars, bars, symbols, and connect lines. If you have grouping variables, you can assign different attributes to each group. In the Example of an individual plot with groups, you compare the elasticity of balls made with two different additives, along with a control. You want to customize the data display.
Categorical variable for attribute assignment
1. Open the worksheet BILLIARD.MTW.
2. Choose Graph > Individual Value Plot.
3. Choose One Y - With Groups, then click OK.
4. In Graph variables, enter Elastic.
5. In Categorical variables for grouping (1-4, outermost first), enter Additive Batch.
6. Click Data View.
7. In Categorical variables for attribute assignment, enter Additive.
8. Click OK in each dialog box.

Individual symbols (default) and mean connect line
1. To recall the last dialog box, press [Ctrl]+[E].
2. Click Data View.
3. Check Mean connect line.
4. Click OK in each dialog box.

Note: You can also use Editor > Add to add and remove data displays.

Bar Chart
Bar Chart – Data View – Data Display
... > Data View > Data Display
Use to represent the data with one or more data display types, including bars, symbols, connect lines, and project lines. After creating a graph, you can:
• Change the data display attributes (see Editing Data Display Overview).
• Add or remove data display types (see Adding Graph Elements).

Dialog box items
Data Display
Bars: Check to display bars that join each data value to its base.
Symbols: Check to represent each data value with a symbol.
Connect line: Check to connect the data values.
Project lines: Check to display lines that project from each data point to its base.

Categorical variables for attribute assignment: Enter up to four columns of grouping variables to assign different attributes to each group of the categorical x-scale variables. You can only use categorical variables included in the bar chart.

To change the data display
1. In the graph dialog box, click Data View.
2. Under Data Display, check one or more of the following:
 • Bars to display bars that join each data value to its base.
 • Symbols to represent each data value with a symbol.
 • Connect line to connect the data values.
 • Project lines to display lines that project from each data point to its.
In **Categorical variables for attribute assignment**, enter up to four columns of grouping variables to assign different attributes to each group of the categorical x-scale variables. You can only use categorical variables included in the bar chart.

Click **OK** in each dialog box.

Examples of bar chart data display
You can represent the data with bars, symbols, connect lines, and project lines. If you have grouping variables, Minitab assigns different attributes to each group and displays a legend. In the Example of a stacked bar chart of counts, you examine the number of rejected panels for each type of paint flaw, stacked by time period. You want to customize the data display.

Bar (default) and connect line
1. Open the worksheet EXH_QC.MTW.
2. Choose **Graph > Bar Chart**.
3. Under **Bars represent**, choose **Counts of unique values**. Choose **Stack**, then click **OK**.
4. In **Categorical variables (2-4, outermost first)**, enter **Flaws Period**.
5. Click **Bar Chart Options**.
6. Under **Order Main X Groups Based on**, choose **Decreasing Y**. Click **OK**.
7. Click **Data View**.
8. Check **Connect line**. Click **OK** in each dialog box.

Symbols and project lines
1. To recall the last dialog box, press [Ctrl]+[E].
2. Click **Data View**.
3. Uncheck **Bars** and **Connect line**.
4. Check **Symbols** and **Project lines**.
5. Click **OK** in each dialog box.

Note You can also use **Editor > Add** to add and remove data displays.

Time Series Plot

Time Series Plot – Data View – Data Display
...

Use to represent the data with one or more data display types, including symbols, connect lines, and project lines. After creating a graph, you can:
- Change the data display attributes (see **Editing Data Display Overview**).
- Add or remove data display types (see **Adding Graph Elements**).

Dialog box items
Data Display
- **Symbols**: Check to represent each data point with a symbol.
- **Connect line**: Check to connect the data points.
- **Project lines**: Check to display lines that project from each data point to its base.

To change the data display
1. In the graph dialog box, click **Data View**.
2 Under Data Display, check one or more of the following:
 • Symbols to represent each data point with a symbol.
 • Connect line to connect the data points.
 • Project lines to display lines that project from each data point to its base.
3 Click OK in each dialog box.

Example of time series data display
You can represent the data with symbols, connect lines, and project lines. You can also fit a lowess smoother to the data. If you have grouping variables, Minitab assigns different attributes to each group and displays a legend. In the Example of a simple time series plot, you track a company's quarterly sales over three years. You want to customize the data display.

Symbols (default) and project lines
1 Open the worksheet NEWMARKET.MTW.
2 Choose Graph > Time Series Plot.
3 Choose Simple, then click OK.
4 In Series, enter SalesB.
5 Click Time/Scale.
6 Under Time Scale, choose Calendar. Then choose Quarter Year.
7 Under Start Values, choose One set for all variables.
8 Under Quarter, type 1. Under Year, type 2000. Click OK.
9 Click Data View.
10 Uncheck Connect line. Check Project lines.
11 Click OK in each dialog box.

Contour Plot
Contour Plot – Data View – Data Display
... > Data View > Data Display
Use to represent the data with one or more data display types, including areas, contour lines, and symbols. After creating a graph, you can:
 • Change the data display attributes (see Editing Data Display Overview).
 • Add or remove data display types (see Adding Graph Elements).
More Use Tools > Options > Individual Graphs > Contour Plots > Options to set the default data display.

Dialog box items
Data Display
 Area: Check to shade the areas between contours.
 Contour lines: Check to draw contour lines.
 Symbols: Check to represent each x-y data point with a symbol.

To change the data display
1 In the graph dialog box, click Data View.
2 Under Data Display, check one or more of the following:
 • Area to shade the areas between contours.
 • Contour lines to draw contour lines.
 • Symbols to represent each x-y data point with a symbol.
3 Click OK in each dialog box.
Examples of contour plot data display
You can represent the data with areas, contour lines, and symbols. In the Example of a contour plot, you determine the optimal time and temperature for reheating a new frozen entree. You want to customize the data display.

Area (default) and contour lines
1. Open the worksheet REHEAT.MTW.
2. Choose Graph > Contour Plot.
4. Click Data View.
5. Under Data Display, check Contour lines.
6. Click OK in each dialog box.

Area (default) and symbols
1. To recall the last dialog box, press [Ctrl]+[E].
2. Click Data View.
3. Uncheck Contour lines.
4. Check Symbols.
5. Click OK in each dialog box.

Note You can also use Editor > Add to add and remove data displays.

3D Scatterplot
3D Scatterplot – Data View – Data Display
... > Data View > Data Display
Use to represent the data with one or more data display types, including symbols and project lines. After creating a graph, you can:
- Change the data display attributes (see Editing Data Display Overview).
- Add or remove data display types (see Adding Graph Elements).

Dialog box items
Data Display
Symbols: Check to represent each data point with a symbol.
Project lines: Check to display lines that project from each data point to its base.

To change the data display
1. In the graph dialog box, click Data View.
2. Under Data Display, check one or more of the following:
 - Symbols to represent each data point with a symbol.
 - Project lines to display lines that project from each data point to its base. The default base is the minimum z-value on the x-y plane.
3. Click OK in each dialog box.

Example of a 3D scatterplot
Your company manufactures frozen foods and you need to determine the optimal time and temperature for reheating a new frozen entree. You reheat samples at a number of different times and temperatures, then have trained judges rate...
Customizing Graphs

each for overall quality on a scale of 0 (not enjoyable) – 10 (most enjoyable). Create a 3D scatterplot with project lines to illustrate the average quality scores.

1. Open the worksheet REHEAT.MTW.
2. Choose Graph > 3D Scatterplot.
3. Choose Simple, then click OK.
5. Click Data View.
6. Under Data Display, check Project lines. Click OK in each dialog box.

Interpreting the results

Reheating at the shorter time intervals results in under-cooked product and low quality scores. However, reheating at the longest intervals combined with the highest temperatures also results in low scores because the food becomes over-cooked. The optimal settings appear to be between 400° and 450° and between about 30 and 36 minutes.

Adding the project lines helps you visualize each point’s position in three-dimensional space. Rotating the graph and viewing it from different angles can also help.

Additional examples that help visualize these data include:

- Scatterplot with connect line
- Scatterplot with connect lines and groups
- 3D surface plot
- 3D wireframe plot
- Contour plot

Example of a 3D scatterplot with groups

Your company manufactures frozen foods and you need to determine the optimal time and temperature for reheating a new frozen entree. You randomly assign two operators to reheat samples at a number of different times and temperatures. Three trained judges then rate each sample for overall quality on a scale of 0 (not enjoyable) – 10 (most enjoyable), and the average quality scores are recorded. Create a 3D scatterplot with project lines grouped by operator to illustrate the quality scores.

1. Open the worksheet REHEAT.MTW.
2. Choose Graph > 3D Scatterplot.
3. Choose With Groups, then click OK.
5. In Categorical variables for grouping (0-3), enter Operator.
6. Click Data View.
7. Under Data Display, check Project lines. Click OK in each dialog box.
Interpreting the results
The operator does not appear to make a systematic difference in perceived quality.
Reheating at the shorter time intervals results in under-cooked product and low quality scores. However, reheating at the longest intervals combined with the highest temperatures also results in low scores because the food becomes over-cooked. The optimal settings appear to be between 400° and 450° and between about 30 and 36 minutes.

Adding the project lines helps you visualize each point’s position in three-dimensional space. Rotating the graph and viewing it from different angles can also help.

Additional examples that help visualize these data include:
- Scatterplot with connect line
- Scatterplot with connect lines and groups
- 3D surface plot
- 3D wireframe plot
- Contour plot

3D Surface Plot

3D Surface Plot -- Data View -- Data Display

... > Data View > Data Display
Use to represent the data with one or more data display types, including a surface, symbols, and project lines. After creating a graph, you can:
- Change the data display attributes (see Editing Data Display Overview).
- Add or remove data display types (see Adding Graph Elements).

Dialog box items

Data Display
Surface: Check to display a continuous surface of z-values (surface plot) or a grid of z-values (wireframe plot) that is fitted to your data.
Symbols: Check to represent each data point with a symbol.
Project lines: Check to display lines that project from each data point to its base.

To change the data display
1 In the graph dialog box, click Data View.
2 Under Data Display, check one or more of the following:
 - Surface to display continuous surface of z-values (surface plot) or a grid of z-values (wireframe plot) that is fitted to your data by interpolation.
 - Symbols to represent each data point with a symbol.
• **Project lines** to display lines that project from each data point to its base. The default base is the minimum z-value on the x-y plane.

3 Click **OK** in each dialog box.

Examples of 3D surface plot data display

You can represent the data with a surface, symbols, and project lines. If you have grouping variables, Minitab assigns different attributes to each group and displays a legend. In the Example of a 3D surface plot, you determine the optimal time and temperature for reheating a new frozen entree. You want to customize the data display.

3D surface plot (surface only)

1. Open the worksheet `REHEAT.MTW`.
2. Choose **Graph > 3D Surface Plot**.
3. Choose **Surface**, then click **OK**.
5. Click **OK**.

3D surface plot (surface and project lines)

1. To recall the last dialog box, press [Ctrl]+[E].
2. Click **Data View**.
3. Check **Surface** and **Project lines**.
4. Click **OK** in each dialog box.

3D wireframe plot (surface only)

1. Choose **Graph > 3D Surface Plot**.
2. Choose **Wireframe**, then click **OK**.
4. Click **OK**.
3D wireframe plot (surface and symbols)
1. Press [Ctrl]+[E].
2. Click **Data View**.
3. Check Surface and **Symbols**.
4. Click **OK** in each dialog box.

Editing

Editing Data Display Overview

For each graph, you can represent the data with one or more data display types, such as symbols, bars, and areas. Each data display has several attributes, such as size, color, and fill pattern that you can change after you create a graph. To become familiar with available data display editing, double-click the data displays on a graph and investigate.

To enter edit mode, do one of the following:
- Double-click the data display. You can change an individual data value, a group of data values, or all data values.
- Select the data display and choose Editor > Edit.
- Select the data display, right-click, and choose **Edit**.
- Choose the data display from the Select list on the graph toolbar and click **Edit**.

<table>
<thead>
<tr>
<th>Data display</th>
<th>To change...</th>
</tr>
</thead>
</table>
| Symbols | - Type, color, and size – see Edit Symbols - Attributes
- Grouping variables – see Edit Symbols - Groups
- Bar order and y-scale on bar charts – see Edit Symbols - Chart Options
- Overlap of data points – see Edit Symbols - Jitter
- Bin intervals on histograms and dotplots – see Edit Symbols - Binning |
| Connect lines| - Type, color, and size – see Edit Connect Line - Attributes
- Grouping variables – see Edit Connect Line - Groups
- Method and order of connecting data – see Edit Connect Line - Options
- Bar order and y-scale on bar charts – see Edit Connect Line - Chart Options
- Overlap of data points – see Edit Connect Line - Jitter |
| Project lines| - Type, color, and size - see Edit Project Lines - Attributes
- Grouping variables – see Edit Project Lines - Groups
- Project direction and base - see Edit Project Lines - Options
- Bar order and y-scale on bar charts – see Edit Project Lines - Chart Options
- Overlap of data points – see Edit Project Lines - Jitter
- Bin intervals on histograms – see Edit Project Lines - Binning |
| Areas | - Type, color, and size – see Edit Area - Attributes
- Add a grouping variable – see Edit Area - Groups
- Method and order of connecting data – see Edit Area - Options
- Number and placement of contour levels, and resolution of the mesh on a contour plot – see Edit Area - Options
- Stacking order of the variables on an area graph – see Edit Area - Options |
Customizing Graphs

- Overlap of data points – see Edit Area - Jitter
- Bin intervals on histograms – see Edit Area - Binning

Bars
- Type, color, and size – see Edit Bars - Attributes
- Grouping variables – see Edit Bars - Groups
- Bar order and y-scale on bar charts – see Edit Bars - Chart Options
- Bin intervals on histograms – see Edit Bars - Binning

Boxes
- Type, color, and size – see Edit Box - Attributes
- Grouping variables – see Edit Box - Groups
- Box characteristics, such as endpoint type, whiskers, and width – see Edit Box - Options

In addition to the data displays described in the table above, you can also edit interval bars, contour lines, dots, pie slices, and 3D surfaces.

Area

<table>
<thead>
<tr>
<th>Graph</th>
<th>Attributes</th>
<th>Groups</th>
<th>Options</th>
<th>Jitter</th>
<th>Binning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scatterplot</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td>Matrix Plot</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histogram</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area Graph</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contour Plot</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Edit Area – Attributes

Select area > Editor > Edit Area > Attributes

Use to customize area fill and border attributes on a scatterplot, matrix plot, histogram, or area graph.

You can also customize the area attributes on a contour plot.

Dialog box items

Fill Pattern

Automatic: Choose to accept the default fill pattern.

Custom: Choose customize the fill pattern.

- **Type:** Choose a fill type.
- **Background color:** Choose a background color.

Borders and Fill Lines

Automatic: Choose to accept the default border and fill lines.

Custom: Choose to customize the border and fill lines.

- **Type:** Choose a border line type.
- **Color:** Choose a border and fill line color.
- **Size:** Choose a border line width.

To change fill attributes (areas, bars, boxes, and pie slices)

1. Select and double-click one or more areas, bars, boxes, or pie slices. See Selecting groups and single items.
2. Under **Fill Pattern**, choose one of the following:
 - **Automatic** to accept the default fill pattern.
 - **Custom** to customize the fill pattern.
 - From **Type**, choose a fill type.
 - From **Background color**, choose a background color.
3. Under **Borders and Fill Lines**, choose one of the following:
Customizing and Editing Graphs

- **Automatic** to accept the default border and fill lines.
- **Custom** to customize the border and fill lines.
 - From **Type**, choose a border line type.
 - From **Color**, choose a border and fill line color.
 - From **Size**, choose a border line width.

4. Click **OK**.

Edit Area – Attributes

Select contour areas > Editor > Edit Area > Attributes

Use to customize contour area color and pattern on a contour plot.

You can also customize the area attributes on a scatterplot, matrix plot, histogram or area graph.

Dialog box items

Fill Color

- **One-color ramp**: Choose to represent the contour areas using one color. (Only available if the contour plot has less than six levels. If you reduce the number of levels to be less than six in the **Options** tab, you must click **OK** before Minitab enables the **Attributes** tab.)
 - **Color**: Choose a color (red, blue, green, or gray) to represent the z-values. The darkest shade of this color represents the highest values.

- **Two-color ramp**: Choose to represent the contour areas using two different colors.
 - **Low-end color**: Choose a color to represent the lower z-values. The darkest shade of this color represents the lowest values.
 - **High-end color**: Choose a color to represent the higher z-values. The darkest shade of this color represents the highest values.

- **Custom colors**: Choose to select colors individually for each of the contour areas.
 - **Levels**: Identifies the values for each contour area. This column does not take any input.
 - **Color**: Choose a color for each contour area.
 - **Fill Type**: Choose a fill type for each contour area.

4. Click **OK**.

Edit Area – Binning

Select area > Editor > Edit Area > Binning

Use to define bin intervals by midpoints or cutpoints.

Dialog box items

Interval Type
Customizing Graphs

Midpoint: Choose to define bin intervals by midpoints.
Cutpoint: Choose to define bin intervals by cutpoints.

Interval Definition
- **Automatic**: Choose to accept the default number of bins.
- **Number of intervals**: Choose and enter the number of bins.
- **Midpoint/Cutpoint positions**: Choose and enter custom midpoint or cutpoint positions.

To change the binning
1. Double-click the area, bars, dots, symbols, or lowess smoother.
2. Click the **Binning** tab.
3. Under **Interval Type**, choose **Midpoint** or **Cutpoint** to define bin intervals by midpoints or cutpoints.
4. Under **Interval Definition**, choose one of the following to determine the number of bins:
 - **Automatic** to accept the default number of bins.
 - **Number of intervals**, then enter the number of bins.
 - **Midpoint/Cutpoint positions**, then enter custom midpoint or cutpoint positions.
5. Click **OK**.

Edit Area – Groups

Select all areas > Editor > Edit Area > Groups

Use to add, remove, or change the grouping variables on a scatterplot, matrix plot, or histogram.

Dialog box items
- **Categorical variables for grouping**: Enter up to three columns of grouping variables to assign different attributes for each group and display a legend.
- **Apply same grouping to other data displays**: Check to update all data displays, such as symbols and project lines, to use the same grouping variables as the area. (Available for scatterplots and matrix plots. For histograms, Minitab automatically assigns the grouping variable to all data displays.)

To change the grouping variables
1. Select and double-click all areas, symbols, project lines, bars, or connect lines. See Selecting groups and single items.
2. Click the **Groups** tab.
3. In **Categorical variables for grouping**, enter up to four columns containing categorical grouping variables. Minitab assigns different attributes to each group and displays a legend.
4. If you like, check **Apply same grouping to other data displays** to assign the group attributes to all data displays on the graph. (Not available with histograms, probability plots, or empirical cdf graphs.)
5. Click **OK**.

Edit Area – Options

Select areas > Editor > Edit Area > Options

Use to customize area projection direction, connection function, and base position on a scatterplot or matrix plot.

You can also change the area options on a contour plot or area graph.

Dialog box items
- **Projection Direction**
 - **Toward Y scale**: Choose to extend areas horizontally towards the y-axis.
 - **Toward X scale**: Choose to extend areas vertically towards the x-axis.

- **Connection Function**
 - **Straight**: Choose to connect points with straight lines, then fill the area underneath.
 - **Step**: Choose to connect points using a step pattern. Choose **Left** to make steps with each point at the left of a step level, **Center** to put each point in the middle of the step level (the default), or **Right** to put each point to the right of the step level.

- **Base Position**
Customizing and Editing Graphs

Auto: Choose to use the default base, which is the minimum data value for the y-scale.

Custom: Enter a number for the base. Areas extend from the data value to the base.

To change the area options
1. Double-click the area. See Selecting groups and single items.
2. Click the **Options** tab.
3. Under **Projection Direction**, choose one of the following:
 - **Toward Y scale** to extend areas horizontally towards the y-axis.
 - **Toward X scale** to extend areas vertically towards the x-axis.
4. Under **Connection Function**, choose one of the following:
 - **Straight** to connect points with straight lines, then fill the area underneath.
 - **Step** to connect points using a step pattern. Choose **Left** to make steps with each point at the left of a step level, **Center** to put each point in the middle of the step level (the default), or **Right** to put each point to the right of the step level.
5. Under **Base Position**, choose one of the following:
 - **Auto** to use the default base, which is the minimum data value for the y-scale.
 - **Custom** to define your own base, then enter a number for the base. Areas extend from the data value to the base.

Tip You can add a horizontal or vertical base line by adding a reference line that has the same data value as your base. See Reference Line Overview.
6. Click **OK**.

Edit Area – Options
Select all areas > Editor > Edit > Options
Use to customize the stacking order of the variables on an area graph.
You can also change the area options on a contour plot, and a scatterplot or matrix plot.

Dialog box items
Variable Order
- **Column order (first on top):** Choose to stack the variables in the order they are entered in the dialog box, with the first variable you enter on top of the stack.
- **Variation order (largest on top):** Choose to stack the variables by the degree of variation, with the variable demonstrating the largest variation on top of the stack.

To change the stacking order
1. Select and double-click all areas. See Selecting groups and single items.
2. Click the **Options** tab.
3. Under **Variable Order**, choose one of the following:
 - **Column order (first on top)** to stack the variables in the order they are entered in the dialog box, with the first variable you enter on top of the stack.
 - **Variation order (largest on top)** to stack the variables by the degree of variation, with the variable demonstrating the largest variation on top of the stack.
4. Click **OK**.

Edit Area – Options
Select contour areas > Editor > Edit Area > Options
Use to control the number and placement of contour levels, as well as the resolution of the mesh.
Minitab establishes a series of regular x- and y-values, called a mesh, then estimates where the different contour levels will cross each rectangle of the mesh.
Gridlines were added for reference, but do not necessarily indicate the exact layout of the mesh used to plot the contours.

By default, if your data form a regular x-y mesh, Minitab uses this mesh to estimate the contours. Otherwise, Minitab interpolates values for a regular 15 by 15 mesh. Alternatively, you can specify the number of x- and y-values to include:

- For higher resolution, use more values.
- For lower resolution, use fewer values.

Using a mesh with more and smaller intervals than exist between data points may appear to add more resolution to the image, but the added detail may not be meaningful.

Dialog box items

Contour Levels
- **Automatic**: Choose to accept the default number of contour levels.
- **Number**: Choose to specify the number of contour levels, then type a number between 2 and 11.
- **Values**: Choose to specify the z-values to plot as contours, then type from 2 to 11 values.

Mesh for Interpolating Surface
- **Automatic**: Choose to accept the default mesh.
- **Custom**: Choose to customize the mesh.
 - **X-Mesh Number**: Enter the number of x-values to include in the mesh.
 - **Y-Mesh Number**: Enter the number of y-values to include in the mesh.

Boundary z-value: Enter a z-value to be used at the boundaries (corners and edges) of the plot if your data do not form a regular mesh. By default, Minitab uses the minimum z-value. (If your data follow a regular mesh, this option is not available. This option is not available with response surface or mixtures plots.)

To change the number of contours and mesh
1. Double-click any contour area or contour line.
2. Click the **Options** tab.
3. Under **Contour Levels**, choose one of the following:
 - **Automatic** to accept the default number of contour levels.
 - **Number** to specify the number of contour levels, then enter a number between 2 and 11.
 - **Values** to specify the z-values to plot as contours, then enter from 2 to 11 values.
4. Under **Mesh for Interpolating Surface**, choose one of the following:
 - **Automatic** to accept the default mesh.
 - **Custom** to customize the mesh.
 - In **X-Mesh Number**, enter the number of x-values to include in the mesh.
 - In **Y-Mesh Number**, enter the number of y-values to include in the mesh.
5. In **Boundary z-value**, enter a z-value to be used at the boundaries (corners and edges) of the plot if your data do not form a regular mesh. By default, Minitab uses the minimum z-value. (If your data follow a regular mesh, this option is not available. This option is not available with response surface or mixtures plots.)
6. Click **OK**.
Customizing and Editing Graphs

Edit Area – Jitter

Select all areas > Editor > Edit Area > Jitter

Use to randomly offset (jitter) points to reveal overlapping points on a scatterplot or matrix plot. Because an area fills the space below the points, Minitab adjusts the area when the points are offset.

Dialog box items

Add jitter to direction: Check to offset points so they do not overlap.
 - X: Type a number from 0 to 1 to specify the amount of jitter in the x-direction.
 - Y: Type a number from 0 to 1 to specify the amount of jitter in the y-direction.

To add jitter
1. Select and double-click all areas, connect lines, project lines, or symbols. See Selecting groups and single items.
2. Click the Jitter tab.
3. Check Add jitter to direction to offset points so they do not overlap. Then:
 - In X, type a number from 0 to 1 to specify the amount of jitter in the x-direction.
 - In Y, type a number from 0 to 1 to specify the amount of jitter in the y-direction.
 - (3D scatterplot only) In Z, type a number from 0 to 1 to specify the amount of jitter in the z-direction.
4. Click OK.

Examples of editing areas (area graph)

In Example of an area graph, you examine the trends in employment in three industries in Wisconsin over five years: Wholesale and Retail Trade, Food and Kindred Products, and Fabricated Metals. You want to customize the areas.

Attributes
Change the border size.
1. Double-click any area.
 - From Size, choose 3.
3. Click OK.

Attributes
Change the fill pattern and border size for one variable.
1. Select and double-click the Trade area. See Selecting groups and single items for details.
2. Under Fill Pattern, choose Custom.
 - From Type, choose
 - From Size, choose 1.
4. Click OK.

Examples of editing areas (contour plot)

In Example of a contour plot, you examine the relationship between the time and temperature at which a frozen food was reheated and the quality of the final product. You want to customize the areas.
Attributes
Change the default colors.
1. Double-click a contour area.
2. Under Fill Color, choose Two-color ramp.
 • From Low-end Color, choose Gray.
 • From High-end Color, choose Blue.
3. Click OK.

Options
Increase the number of contour levels.
1. Double-click a contour area.
2. Click the Options tab.
3. Under Contour Levels, choose Number and type 8.
4. Click OK.

Examples of editing areas (histogram)
In the Example of a simple histogram, you determine the amount of torque required to remove shampoo bottle caps. You want to add and customize the areas.

Attributes
Change the area fill pattern and color, and change the border width.
1. Choose Editor > Add > Data Display.
2. Under Data Display, uncheck Bars and check Area.
3. Click OK.
4. Double-click the area.
5. Under Fill Pattern, choose Custom.
 • From Type, choose
 • From Background Color, choose
 • From Size, choose 2.
6. Click OK.
Groups
Add a grouping variable.
1. Double-click the area.
2. Under Fill Pattern, choose Automatic.
4. Click the Groups tab.
5. In Categorical variables for grouping, enter Machine.
6. Click OK.

Binning
Change the number of bins.
1. Double-click the area.
2. Click the Binning tab.
3. Under Interval Definition, choose Number of Interval. Enter 12.
4. Click OK.

Panel
Display each group in a separate panel.
1. Choose Edit > Panel.
2. In By variables with groups in separate panels, enter Machine.
3. Click OK.

Examples of editing areas (scatterplot or matrix plot)
In the Example of a simple scatterplot, you examine the relationship between voltage remaining in your batteries immediately after a flash and the length of time required for a battery to be ready to support another flash. You want to add and customize the areas.

Note Similar area editing functions are available for matrix plots.
Attributes
Change the fill pattern and color.
1. Choose Editor > Add > Data Display.
2. Under Data Display, check Area.
3. Click OK.
4. Double-click the area.
5. Under Fill Pattern, choose Custom.
 • From Type, choose □.
 • From Background Color, choose □.
6. Click OK.

Jitter
Add random offset (jitter) points to reveal overlapping points.
1. Double-click the area.
2. Click the Jitter tab.
3. Check Add jitter to direction.
4. In X, enter 0.1. In Y, enter 0.25.
5. Click OK.

Options
Change the connection function.
1. Double-click the area.
2. Click the Jitter tab.
3. Uncheck Add jitter to direction.
4. Click the Options tab.
5. Under Connection Function, choose Step.
 Then choose Center.
6. Click OK.

Groups
Add a grouping variable.
1. Double-click the area.
2. Click the Groups tab.
3. In Categorical variables for grouping, enter Formulation.
4. Check Apply same grouping to other data displays. Click OK.
5. Select and double-click the Old group. See Selecting groups and single items for details.
6. Click the Attributes tab.
7. Under Fill Pattern, choose Custom.
 • From Background Color, choose □.
8. Click OK.
Panel
To improve visibility, display each group in a separate panel.
1. Choose Editor > Panel.
2. In By variables with groups in separate panels, enter Formulation.
3. Click OK.

Bars

<table>
<thead>
<tr>
<th>Graph</th>
<th>Attributes</th>
<th>Groups</th>
<th>Options</th>
<th>Bar Options</th>
<th>Chart Options</th>
<th>Binning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal Plot (with histograms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histogram</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Value Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bar Chart</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Edit Bars – Attributes
Select bars > Editor > Edit Bars > Attributes
Use to customize bar fill and border attributes on a marginal plot, histogram, interval plot, individual value plot, or bar chart.

Dialog box items
Fill Pattern
- Automatic: Choose to accept the default fill pattern.
- Custom: Choose to customize the fill pattern.
 - Type: Choose a fill type.
 - Background color: Choose a background color.

Borders and Fill Lines
- Automatic: Choose to accept the default border and fill lines.
- Custom: Choose to customize the border and fill lines.
 - Type: Choose a border line type.
 - Color: Choose a border and fill line color.
 - Size: Choose a border line width.

To change fill attributes (areas, bars, boxes, and pie slices)
1. Select and double-click one or more areas, bars, boxes, or pie slices. See Selecting groups and single items.
2. Under Fill Pattern, choose one of the following:
 - Automatic to accept the default fill pattern.
 - Custom to customize the fill pattern.
 - From Type, choose a fill type.
 - From Background color, choose a background color.
3 Under **Borders and Fill Lines**, choose one of the following:
 - **Automatic** to accept the default border and fill lines.
 - **Custom** to customize the border and fill lines.
 - From **Type**, choose a border line type.
 - From **Color**, choose a border and fill line color.
 - From **Size**, choose a border line width.
4 Click **OK**.

Edit Bars – Options/Bar Options

Select bar > Editor > Edit Bars > Options

Select bar > Editor > Edit Bars > Bar Options (bar chart)

Use to customize bar base position on a histogram, interval plot, individual value plot, or bar chart.

Dialog box items

Base Position

- **Auto**: Choose to use the default base.
- **Custom**: Choose and enter a number for the base. Bars extend from the data value to the base.

To change the base

1 Select and double-click one or more bars. See Selecting groups and single items.
2 Click the **Options** or **Bar Options** tab.
3 Under **Base Position**, choose one of the following:
 - **Auto** to use the default base.
 - **Custom** to define your own base, then enter a number for the base. Bars extend from the data value to the base.
4 Click **OK**.

Edit Bars – Binning

Select bars > Editor > Edit Bars > Binning

Use to define bin intervals by midpoints or cutpoints.

Dialog box items

Interval Type

- **Midpoint**: Choose to define bin intervals by midpoints.
- **Cutpoint**: Choose to define bin intervals by cutpoints.

Interval Definition

- **Automatic**: Choose to accept the default number of bins.
- **Number of intervals**: Choose and enter the number of bins.
- **Midpoint/Cutpoint positions**: Choose and enter custom midpoint or cutpoint positions.

To change the binning

1 Double-click the area, bars, dots, symbols, or lowess smoother.
2 Click the **Binning** tab.
3 Under **Interval Type**, choose **Midpoint** or **Cutpoint** to define bin intervals by midpoints or cutpoints.
4 Under **Interval Definition**, choose one of the following to determine the number of bins:
 - **Automatic** to accept the default number of bins.
 - **Number of intervals**, then enter the number of bins.
 - **Midpoint/Cutpoint positions**, then enter custom midpoint or cutpoint positions.
5 Click **OK**.
Customizing and Editing Graphs

Edit Bars – Groups

Select all bars > Editor > Edit Bars > Groups

Use to add, remove, or change the attribute grouping variables on a histogram.
You can also change the groups on interval plots, individual value plots, and bar charts.

Dialog box items

Categorical variables for grouping: Enter up to four columns of categorical grouping variables to assign different attributes to each group and display a legend.

To change the grouping variables

1. Select and double-click all areas, symbols, project lines, bars, or connect lines. See Selecting groups and single items.
2. Click the Groups tab.
3. In Categorical variables for grouping, enter up to four columns containing categorical grouping variables. Minitab assigns different attributes to each group and displays a legend.
4. If you like, check Apply same grouping to other data displays to assign the group attributes to all data displays on the graph. (Not available with histograms, probability plots, or empirical cdf graphs.)
5. Click OK.

Edit Bars – Chart Options

Select all bars > Editor > Edit Bars > Chart Options

Select bar chart > Editor > Graph Options

Use to specify increasing or decreasing bar order, choose a cumulative y-scale, or choose a percent scale for the y-axis.
If you have more than one categorical variable, use to specify the grouping level for calculating the scale and to stack data.

Dialog box items

Order Main X Groups Based On Choose the order for the bars. See Ordering Category Groups Based on Y-Axis Values.

Default: Choose to use the default order for bars. For bar charts of counts of unique values and functions of a variable, the default order is ascending, either numerically, chronologically, or alphabetically. (To use a value order other than alphabetical for text categories, see Ordering text categories.) For bar charts of values from a table, the default order is always the order in which the categories appear in the worksheet; any value order is ignored.
Increasing Y: Choose to order bars from smallest to largest y-values.
Customizing Graphs

Decreasing Y: Choose to order bars from largest to smallest y-values.

Note: If the data have multiple categorical variables, Minitab orders the bars by the sum of chart values for the outermost cluster groups.

Show Y as Percent: Check to use a percent scale on the y-axis. See Using Percent Scales and Accumulating Y Across X.

Accumulate Y across X: Check to use a cumulative scale on the y-axis. See Using Percent Scales and Accumulating Y Across X.

Take Percent and/or Accumulate If you have two or more categorical variables, specify for which grouping level you want to show y as a percent and/or accumulate y across x. The options available depend on the number of categorical variables that are included in the bar chart. For more information, see Using Percent Scales and Accumulating Y Across X.

- **Across all categories**: Choose to apply a percent scale and/or cumulative scale across all categories.
- **Within categories at level 1 (outermost)**: Choose to apply a percent scale and/or cumulative scale within categories at the outermost scale level only.
- **Within categories at level 2**: Choose to apply a percent scale and/or cumulative scale within categories at the second grouping level from the bottom only.
- **Within categories at level 3**: Choose to apply a percent scale and/or cumulative scale within categories at the third grouping level from the bottom only.

Stack values for last categorical variable: Check to stack the categories for the last categorical variable. Each category is represented by a separate segment of a bar. (Only available if you have two or more categorical variables.)

To change the bar order and y-scale

1. Select and double-click all bars, connect lines, project lines, or symbols. See Selecting groups and single items.
2. Click the Chart Options tab.
3. Under **Order Main X Groups Based On**, choose one of the following:
 - **Default** to arrange the bars based on the variable type: numeric in ascending order, date/time in increasing chronological order, and text in alphabetical order. To change the display order for text categories, see Ordering text categories. See Ordering Category Groups Based on Y-Axis Values.
 - **Increasing Y** to order bars from smallest to largest y-values.
 - **Decreasing Y** to order bars from largest to smallest y-values.
4. Check **Show Y as Percent** to use a percent scale on the y-axis. See Using Percent Scales and Accumulating Y Across X.
5. Check **Accumulate Y across X** to use a cumulative scale on the y-axis. See Using Percent Scales and Accumulating Y Across X.
6. Under **Take Percent and/or Accumulate**, choose one of the following. The options available depend on how many categorical variables are included in the bar chart. For more information, see Using Percent Scales and Accumulating Y Across X.
 - **Across all categories** to apply a percent scale and/or cumulative scale across all categories.
 - **Within categories at level 1 (outermost)** to apply a percent scale and/or cumulative scale within categories at the outermost scale level only.
 - **Within categories at level 2** to apply a percent scale and/or cumulative scale within categories at the second grouping level from the bottom only.
 - **Within categories at level 3** to apply a percent scale and/or cumulative scale within categories at the third grouping level from the bottom only.
7. Check **Stack values for last categorical variable** to stack the categories for the last categorical variable. Each category is represented by a separate segment of a bar. (Only available if you have two or more categorical variables.)
8. Click **OK**.

Examples of editing bars (bar chart)

In the Example of a simple bar chart of counts, you examine the number of rejected door panels for each type of paint flaw. You want to customize the bars.
Attributes
Change the fill pattern and color, and change the fill line color.
1. Select and double-click all bars.
2. Under Fill Pattern, choose Custom.
 - From Type, choose any pattern.
 - From Background Color, choose any color.
 - From Color, choose any color.
4. Click OK.

Bar options
Change the base.
1. Select and double-click all bars.
2. Click the Bar Options tab.
3. Under Base Position, choose Custom. Then enter 5.
4. Click OK.

Bar options
Change the bar order and scale.
1. Select and double-click all bars.
2. Click the Bar Options tab.
4. Click the Chart Options tab.
5. Under Order Main X Groups Based On, choose Increasing Y.
6. Check Show Y as Percent.
7. Click OK.

Groups
Add a grouping variable.
1. Select and double-click all bars.
2. Under Fill Pattern, choose Auto.
4. Click the Groups tab.
5. In Categorical variables for attribute assignment, enter Flaws.
6. Click OK.
Examples of editing bars (histogram)

In the Example of a simple histogram, you examine the amount of torque required to remove shampoo bottle caps. You want to edit the bars.

Attributes
Change the fill pattern and color, and change the border color and size.
1. Select and double-click all bars.
2. Under Fill Pattern, choose Custom.
 - From Type, choose □□□□.
 - From Background Color, choose □□.
 - From Color, choose □□.
 - From Size, choose 2.
4. Click OK.

Options
Change the base.
1. Select and double-click all bars.
2. Click the Options tab.
3. Under Base Position, choose Custom. Then enter 5.
4. Click OK.

Groups
Add a grouping variable.
1. Select and double-click all bars.
2. Under Fill Pattern, choose Automatic.
4. Click the Options tab.
6. Click the Groups tab.
8. Click OK.

Panels
To improve visibility, display each group in a separate panel
1. Choose Edit > Panel.
2. In By variables with groups in separate panels, enter Machine.
3. Click OK.
Examples of editing bars (interval plot)
In the Example of an interval plot with multiple y’s and groups, you assess the consistency of plastic pipe diameters. You want to add and customize the bars.

Note Similar area editing functions are available for individual value plots.

Groups
Assign attributes based on a grouping variable.
1. Choose Editor > Add > Data Display.
2. Under Data Display, check Bar.
3. Click OK.
4. Select and double-click all bars.
5. Click the Groups tab.
7. Click OK.

Attributes
Change the fill color, and border color and width.
1. Select and double-click all bars.
2. Under Fill Pattern, choose Custom.
 - From Background color, choose .
 - From Size, choose 2.
 - From Color, choose .
4. Click OK.
5. Select and double-click the tallest bar (Machine = 1; Week = 5). See Selecting groups and single items for details.
6. Under Fill Pattern, choose Custom.
 - From Background color, choose .
 - From Size, choose 2.
 - From Color, choose .
8. Click OK.

Options
Change the base and hide the legend.
1. Select and double-click all bars.
2. Click the Options tab.
3. Under Base Position, choose Custom. Then enter 5.5.
4. Select the legend. Click on the toolbar to delete.
5. Click OK.
Examples of editing bars (marginal plot)

In the Example of a marginal plot, you examine the relationship between flash recovery time (minimum time between flashes) and the voltage remaining in the camera battery. You want to edit the bars.

Attributes

Change the fill pattern and color.

1. Select and double-click all bars.
2. Under Fill Pattern, choose Custom.
 - From Type, choose.
 - From Background Color, choose.
3. Click OK.

Box

<table>
<thead>
<tr>
<th>Graph</th>
<th>Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal Plot (with boxplots)</td>
<td></td>
</tr>
<tr>
<td>Boxplot</td>
<td></td>
</tr>
</tbody>
</table>

Edit Box – Attributes

Select box > Editor > Edit Box > Attributes

Use to customize box fill and border attributes on a boxplot.

Dialog box items

Fill Pattern

Automatic: Choose to accept the default fill pattern.

Custom: Choose to customize the fill pattern.

Type: Choose a fill type.

Background color: Choose a background color.

Borders and Fill Lines

Automatic: Choose to accept the default border and fill lines.

Custom: Choose to customize the border and fill lines.

Type: Choose a border line type.

Color: Choose a border and fill line color.

Size: Choose a border line width.

To change fill attributes (areas, bars, boxes, and pie slices)

1. Select and double-click one or more areas, bars, boxes, or pie slices. See Selecting groups and single items.
2. Under Fill Pattern, choose one of the following:
 - Automatic to accept the default fill pattern.
 - Custom to customize the fill pattern.
 - From Type, choose a fill type.
 - From Background color, choose a background color.
3. Under Borders and Fill Lines, choose one of the following:
 - Automatic to accept the default border and fill lines.
 - Custom to customize the border and fill lines.
Customizing and Editing Graphs

- From **Type**, choose a border line type.
- From **Color**, choose a border and fill line color.
- From **Size**, choose a border line width.

4 Click **OK**.

Edit Box – Groups

Select all boxes > Editor > Edit Box > Groups

If you have grouping variables on a boxplot, you can assign different attributes to each group.

Dialog box items

Categorical variables for attribute assignment: Enter up to four columns of categorical grouping variables to assign different attributes for each group and display a legend.

Apply attribute variables to other data displays: Check to update all data displays, such as symbols and connect lines, to use the same attribute variables as the boxes.

To assign attributes based on grouping variables

1 Select and double-click all boxes, bars, connect lines, dots, interval bars, or project lines. See Selecting groups and single items.
2 Click the **Groups** tab.
3 In **Categorical variables for attribute assignments**, enter up to four columns of categorical grouping variables for bar chart and three for other graphs. Minitab assigns different attributes to each group and may display a legend.
4 If you like, check **Apply attribute variable to other data displays** to assign the group attributes to all data displays on the graph. (Not available with dotplots.)
5 Click **OK**.

Edit Interquartile Range Box – Options

Select all interquartile range boxes > Editor > Edit Interquartile Range Box > Options

Use to customize interquartile range box endpoints or width, or suppress/display the whiskers on a boxplot.

Dialog box items

Box endpoints

- **Quartiles**: Choose to display the box bottom at the 1st quartile (25th percentile) and box top at the 3rd quartile (75th percentile).
- **Hinges**: Choose to use the hinges for the box endpoints.
- **Percentile**: Choose to specify the percentiles for the box bottom and top, then enter one number between 0 and 50 for the percentile.

Whiskers

- **None**: Choose to suppress display of whiskers.
- **Show**: Choose to display whiskers.

Box width proportional to sample size: Check to make the width of each box proportional to the square root of the number of observations in the box.

Note You can change the spacing between the x-scale categories, which also changes box width, see Edit Categorical Scale - Scale.

To change the box endpoints, box width, and display whiskers

1 Double-click all interquartile range boxes. See Selecting groups and single items.
2 Click the **Options** tab.
3 Under **Box endpoints**, choose one of the following:
 - **Quartiles** to display the box bottom at the 1st quartile (25th percentile) and box top at the 3rd quartile (75th percentile).
 - **Hinges** to use the hinges for the box endpoints.
 - **Percentile** to specify the percentiles for the box bottom and top, then enter one number between 0 and 50 for the percentile.
4 Under **Whiskers**, choose one of the following:
 - **None** to suppress display of whiskers.
 - **Show** to display whiskers.
5 Check **Box width proportional to sample size** to make the width of each box proportional to the square root of the number of observations in each group.
6 Click **OK**.

Edit Median Confidence Interval Box – Options

Select all median confidence interval boxes > Editor > Edit Confidence Interval Box > Options

Use to customize the median confidence interval box on a boxplot.

Dialog box items

- **Confidence level**: Enter a number between 0 and 100 to specify the confidence level. The default is 95%. The box endpoints correspond to the values of a confidence interval for the median based on the sign test.
- **Whiskers**
 - **None**: Choose to suppress display of whiskers.
 - **Show**: Choose to display whiskers.
- **Box width proportional to sample size**: Check to make the width of each box proportional to the square root of the number of observations in the box.

To change the median confidence interval box

1 Select and double-click all boxes. See Selecting groups and single items.
2 Click the **Options** tab.
3 In **Confidence level**, enter a number between 0 and 100 to specify the confidence level. The default is 95%. The box endpoints correspond to the values of a confidence interval for the median based on the sign test.
4 Under **Whiskers**, choose one of the following:
 - **None** to suppress display of whiskers.
 - **Show** to display whiskers.
5 Check **Box width proportional to sample size** to make the width of each box proportional to the square root of the number of observations in the box.
6 Click **OK**.

Edit Range Box – Options

Select all range boxes > Editor > Edit Range Box > Options

Use to customize range box width on a boxplot.

Dialog box items

- **Box width proportional to sample size**: Check to make the width of each box proportional to the square root of the number of observations in the box.

To change the range box width

1 Select and double-click all the range boxes. See Selecting groups and single items.
2 Click the **Options** tab.
3 Check **Box width proportional to sample size** to make the width of each box proportional to the square root of the number of observations in each group.
4 Click **OK**.

Examples of editing interquartile range boxes (boxplot)

In the Example of a boxplot with multiple y’s and groups, you assess the consistency of plastic pipe diameters. You want to customize the interquartile range boxes.
Groups
Assign attributes based on a grouping variable.
1. Double-click any box.
2. Click the Groups tab.
3. In Categorical variables for attribute assignment, enter Machine.
4. Click OK.

Attributes
Change the fill pattern and color, and fill line color for each group.
1. Select and double-click the orange boxes (Machine = 1). See Selecting groups and single items for details.
2. Under Fill Pattern, choose Custom.
 - From Background Color, choose []
3. Click OK.
4. Select and double-click the green symbols (Machine = 2).
5. Under Fill Pattern, choose Custom.
 - From Type, choose []
 - From Background color, choose []
 - From Color, choose []
7. Click OK.

Options
Change the box endpoints and box width.
1. Double-click any box.
2. Click the Options tab.
3. Under Box Endpoints, choose Hinges.
4. Click OK.

Examples of editing confidence interval boxes (boxplot)
In the Example of a boxplot with multiple y’s and groups, you assess the consistency of plastic pipe diameters. You want to add and customize the confidence interval boxes.
Groups
Add confidence interval boxes, delete the interquartile range boxes, and assign attributes based on a grouping variable.

1. Choose Editor > Add > Data Display.
2. Under Data Display, check Median confidence interval box.
3. Click OK.
4. Select the interquartile range boxes. Click on the toolbar to delete them.
5. Double-click any box.
6. Click the Groups tab.
8. Click OK.

Attributes
Change the fill pattern and color, and border width for each group.

1. Select and double-click the orange boxes (Machine = 1). See Selecting groups and single items for details.
2. Under Fill Pattern, choose Custom.
 • From Background Color, choose
 • From Size, choose 2.
4. Click OK.
5. Select and double-click the green symbols (Machine = 2).
6. Under Fill Pattern, choose Custom.
 • From Background Color, choose
 • From Size, choose 2.
8. Click OK.

Options
Change the confidence interval and show whiskers.

1. Double-click any box.
2. Click the Options tab.
3. In Confidence Interval, enter 0.90.
4. Under Whiskers, choose Show.
5. Click OK.

Examples of editing range boxes (boxplot)
In the Example of a boxplot with multiple y’s and groups, you assess the consistency of plastic pipe diameters. You want to add and customize the range boxes.
Customizing and Editing Graphs

Groups
Add range boxes, delete the interquartile range boxes, and assign attributes based on a grouping variable.

1. Choose Editor > Add > Data Display.
2. Under Data Display, check Range box.
3. Click OK.
4. Select the interquartile range boxes. Click on the toolbar to delete them.
5. Double-click any box.
6. Click the Groups tab.
8. Click OK.

Attributes
Change the fill pattern and color for each group.

1. Select and double-click the orange boxes (Machine = 1). See Selecting groups and single items for details.
2. Under Fill Pattern, choose Custom.
 • From Type, choose.
 • From Background Color, choose.
3. Click OK.
4. Select and double-click the green symbols (Machine = 2).
5. Under Fill Pattern, choose Custom.
 • From Background Color, choose.
6. Click OK.

3D Box
Edit Box – Attributes
Editor > Graph Options > Attributes
Use to customize box fill and border attributes of the 3D box on a 3D scatterplot and 3D surface plot.

Dialog box items
Fill Pattern
 Automatic: Choose to accept the default fill pattern.
 Custom: Choose customize the fill pattern.
 Type: Choose a fill type.
 Background color: Choose a background color.

Borders and Fill Lines
 Automatic: Choose to accept the default border and fill lines.
 Custom: Choose to customize the border and fill lines.
 Type: Choose a border line type.
 Color: Choose a border and fill line color.
 Size: Choose a border line width.

To change fill attributes (areas, bars, boxes, and pie slices)
1. Select and double-click one or more areas, bars, boxes, or pie slices. See Selecting groups and single items.
2. Under Fill Pattern, choose one of the following:
 • Automatic to accept the default fill pattern.
Customizing Graphs

- **Custom** to customize the fill pattern.
 - From **Type**, choose a fill type.
 - From **Background color**, choose a background color.

3 Under **Borders and Fill Lines**, choose one of the following:
- **Automatic** to accept the default border and fill lines.
- **Custom** to customize the border and fill lines.
 - From **Type**, choose a border line type.
 - From **Color**, choose a border and fill line color.
 - From **Size**, choose a border line width.

4 Click **OK**.

Edit Box – Box Options

Editor > Graph Options > Box Options

Use to customize 3D box display and aspect ratio on a 3D scatterplot or 3D surface plot.

Dialog box items

Show Box Faces
- **None**: Choose to hide all box faces.
- **Back faces only**: Choose to show the back faces only.
- **All faces**: Choose to show all faces.

Box Aspect Ratio
- **Default**: Choose to accept the default aspect ratio.
- **Proportional to data ranges**: Choose to make the aspect ratio for axes proportional to the data ranges (maximum – minimum).
- **Specified**: Choose to specify the aspect ratio. Then enter the relative **X**, **Y**, and **Z** values.

To change 3D box options

1 Choose **Editor > Graph Options**.
2 Click the **Box Options** tab.
3 Under **Show Box Faces**, choose one of the following:
 - **None** to hide all box faces.
 - **Back faces only** to show the back faces only.
 - **All faces** to show all faces.

4 Under **Box Aspect Ratio**, choose one of the following:
 - **Default** to accept the default aspect ratio.
 - **Proportional to data ranges** to make the aspect ratio for axes proportional to the data ranges (maximum – minimum).
 - **Specified** to specify the aspect ratio. Then enter the relative **X**, **Y**, and **Z** values.

5 Click **OK**.

Edit Box – Surface Options

Editor > Graph Options > Surface Options

Use to customize the grid of regular x- and y-values (mesh) that Minitab uses to calculate the surface.
By default, if your data form a regular x-y mesh, Minitab uses this mesh and creates the plot based on the actual z-values. Otherwise, Minitab interpolates values for a regular 15 by 15 mesh. Alternatively, you can specify the number of x- and y-values to include:

- For higher resolution, use more values.
- For lower resolution, use fewer values.

Note Using a mesh with more and smaller intervals than exist between data points may appear to add more resolution to the image, but the added detail may not be meaningful.

Dialog box items

Mesh for Interpolating Surface

- **Automatic:** Choose to accept the default mesh.
- **Custom:** Choose to customize the mesh.
 - **X-Mesh Number:** Enter the number of x-values to include in the mesh.
 - **Y-Mesh Number:** Enter the number of y-values to include in the mesh.

Boundary z-value: Enter a z-value to be used at the boundaries (corners and edges) of the plot if your data do not form a regular mesh. By default, Minitab uses the minimum z-value. (If your data follow a regular mesh, this option is not available. This option is not available with response surface or mixtures plots.)

To change the mesh

1. Double-click the surface.
2. Click the **Options** tab.
3. Under **Mesh for Interpolating Surface**, choose one of the following:
 - **Automatic** to use the default mesh.
 - **Custom** to customize the mesh.
 - In **X-Mesh Number**, enter the number of x-values to include in the mesh.
 - In **Y-Mesh Number**, enter the number of y-values to include in the mesh.
4. In **Boundary z-value**, enter a z-value to be used at the boundaries (corners and edges) of the plot if your data do not form a regular mesh. By default, Minitab uses the minimum z-value. (If your data follow a regular mesh, this option is not available. This option is not available with response surface or mixtures plots.)
5. Click **OK**.

Examples of editing the 3D box

In Example of a 3D wireframe plot, you examined the optimal time and temperature for reheating a new frozen entree. You want to customize the 3D box.

Note Similar area editing functions are available for 3D scatterplots.
Attributes
Change the 3D box type and color.
1. Choose Editor > Graph Options.
2. Under Fill Pattern, choose Custom.
 - From Background Color, choose [].
 - From Size, choose 2.
4. Click OK.

Box Options
Change display of box faces.
1. Choose Editor > Graph Options.
2. Click the Box Options tab.
3. Under Show Box Faces, choose Back faces only.
4. Click OK.

Surface Options
Change the mesh.
1. Choose Editor > Graph Options.
2. Click the Surface Options tab.
3. Under Mesh for Interpolating Surface, choose Custom.
 - In X-Mesh Number, type 30.
 - In Y-Mesh Number, type 30.
4. Click OK.
Customizing and Editing Graphs

Connect Lines

<table>
<thead>
<tr>
<th>Graph</th>
<th>Attributes</th>
<th>Groups</th>
<th>Options</th>
<th>Jitter</th>
<th>Connect Options</th>
<th>Chart Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scatterplot</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Plot</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECDF Graph</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boxplot</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval Plot</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Value Plot</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bar Chart</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Series Plot</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Edit Connect Line – Attributes

Select connect line > Editor > Edit Connect Line > Attributes

Use to customize connect line attributes.

Dialog box items

Lines

Automatic: Choose to accept the default line attributes.

Custom: Choose to customize the line attributes.

Type: Choose a line type.

Color: Choose a line color.

Size: Choose a line width.

To change line and interval bar attributes

1. Select and double-click one or more lines or interval bars. See Selecting groups and single items.
2. Under Lines, choose one of the following:
 - Automatic to accept the default line attributes.
 - Custom to customize the line attributes.
 - From Type, choose a line type.
 - From Color, choose a line color.
 - From Size, choose a line width.
3. Click OK.

Edit Connect Line – Options

Select connect line > Editor > Edit Connect Line > Options

Use to customize connection function and connection order for a scatterplot and matrix plot.

Dialog box items

Connection Function

Straight: Choose to connect points with straight lines, then fill the area underneath.

Step: Choose to connect points using a step pattern. Choose Left to make steps with each point at the left of a step level, Center to place the step halfway between the points (the default), or Right to make steps with each point at the right of the step level.

Connection Order

Worksheet: Choose to connect points as they occur in the worksheet.

Increasing X: Choose to connect points from least to greatest horizontally.

Increasing Y: Choose to connect points from least to greatest vertically.
To change the connect line options
1. Double-click the connect line. See Selecting groups and single items.
2. Click the **Options** tab.
3. Under **Connection Function**, choose one of the following:
 - **Straight** to connect points with straight lines, then fill the area underneath.
 - **Step** to connect points using a step pattern. Choose **Left** to make steps with each point at the left of a step level, **Center** to put each point in the middle of the step level (the default), or **Right** to put each point at the right of the step level.
4. Under **Connection Order**, choose one of the following:
 - **Worksheet** to connect points in the order they appear in the worksheet.
 - **Increasing X** to connect points from least to greatest horizontally.
 - **Increasing Y** to connect points from least to greatest vertically.
5. Click **OK**.

Edit Connect Line – Options/Connect Options

Select **connect line** > **Editor** > **Edit Connect Line** > **Options** (empirical cdf, boxplot, interval plot, individual value plot, and time series plot)

Select **connect line** > **Editor** > **Edit Connect Line** > **Connect Options** (bar chart)

Use to customize connection function.

Dialog box items

Connection Function

- **Straight**: Choose to connect points with straight lines, then fill the area underneath.
- **Step**: Choose to connect points using a step pattern. Choose **Left** to make steps with each point at the left of a step level, **Center** to place the step halfway between the points (the default), or **Right** to make steps with each point at the right of the step level.

To change the connection function
1. Double-click the connect line. See Selecting groups and single items.
2. Click the **Options** (time series plot, interval plot, and boxplot) or **Connect Options** (bar chart) tab.
3. Under **Connection Function**, choose one of the following:
 - **Straight** to connect points with straight lines, then fill the area underneath.
 - **Step** to connect points using a step pattern. Choose **Left** to make steps with each point at the left of a step level, **Center** to put each point in the middle of the step level (the default), or **Right** to put each point at the right of the step level.
4. Click **OK**.

Edit Connect Line – Chart Options

Select **connect lines** > **Editor** > **Edit Connect Line** > **Chart Options**

Select **bar chart** > **Editor** > **Graph Options**

Use to specify increasing or decreasing bar order, choose a cumulative y-scale, or choose a percent scale for the y-axis.

If you have more than one categorical variable, use to specify the grouping level for calculating the scale and to stack data.

Dialog box items

Order Main X Groups Based On Choose the order for the bars. See Ordering Category Groups Based on Y-Axis Values.

- **Default**: Choose to use the default order for bars. For bar charts of counts of unique values and functions of a variable, the default order is ascending, either numerically, chronologically, or alphabetically. (To use a value order other than alphabetical for text categories, see Ordering text categories.) For bar charts of values from a table, the default order is always the order in which the categories appear in the worksheet; any value order is ignored.
- **Increasing Y**: Choose to order bars from smallest to largest y-values.
- **Decreasing Y**: Choose to order bars from largest to smallest y-values.
Note If the data have multiple categorical variables, Minitab orders the bars by the sum of chart values for the outermost cluster groups.

Show Y as Percent: Check to use a percent scale on the y-axis. See Using Percent Scales and Accumulating Y Across X.

Accumulate Y across X: Check to use a cumulative scale on the y-axis. See Using Percent Scales and Accumulating Y Across X.

Take Percent and/or Accumulate If you have two or more categorical variables, specify for which grouping level you want to show y as a percent and/or accumulate y across x. The options available depend on the number of categorical variables that are included in the bar chart. For more information, see Using Percent Scales and Accumulating Y Across X.

- **Across all categories:** Choose to apply a percent scale and/or cumulative scale across all categories.
- **Within categories at level 1 (outermost):** Choose to apply a percent scale and/or cumulative scale within categories at the outermost scale level only.
- **Within categories at level 2:** Choose to apply a percent scale and/or cumulative scale within categories at the second grouping level from the bottom only.
- **Within categories at level 3:** Choose to apply a percent scale and/or cumulative scale within categories at the third grouping level from the bottom only.

Stack values for last categorical variable: Check to stack the categories for the last categorical variable. Each category is represented by a separate segment of a bar. (Only available if you have two or more categorical variables.)

Edit Connect Line – Jitter

Select all connect lines > Editor > Edit Connect Line > Jitter

Use to randomly offset (jitter) points to reveal overlapping points on a scatterplot or matrix plot. Because a connect line passes through the points, Minitab adjusts the line when the points are offset.

Dialog box items

- **Add jitter to direction:** Check to offset points so they do not overlap.
 - **X:** Type a number from 0 to 1 to specify the amount of jitter in the x-direction.
 - **Y:** Type a number from 0 to 1 to specify the amount of jitter in the y-direction.

To add jitter

1. Select and double-click all areas, connect lines, project lines, or symbols. See Selecting groups and single items.
2. Click the Jitter tab.
3. Check **Add jitter to direction** to offset points so they do not overlap. Then:
 - In **X**, type a number from 0 to 1 to specify the amount of jitter in the x-direction.
 - In **Y**, type a number from 0 to 1 to specify the amount of jitter in the y-direction.
 - (3D scatterplot only) In **Z**, type a number from 0 to 1 to specify the amount of jitter in the z-direction.
4. Click **OK**.

Edit Connect Line – Groups

Select all connect lines > Editor > Edit Connect Line > Groups

Use to add, remove, or change the grouping variables on a scatterplot, matrix plot, and time series plot. You can also add an attribute grouping variable to boxplots, interval plots, individual value plots, and bar charts.

Dialog box items

- **Categorical variables for grouping:** Enter up to three columns of categorical grouping variables to assign different attributes to each group and display a legend.
- **Apply same grouping to other data displays:** Check to update all data displays, such as symbols and project lines, to use the same grouping variables as the connect line.

To change the grouping variables

1. Select and double-click all areas, symbols, project lines, bars, or connect lines. See Selecting groups and single items.
2. Click the Groups tab.
3 In **Categorical variables for grouping**, enter up to four columns containing categorical grouping variables. Minitab assigns different attributes to each group and displays a legend.

4 If you like, check **Apply same grouping to other data displays** to assign the group attributes to all data displays on the graph. (Not available with histograms, probability plots, or empirical cdf graphs.)

5 Click **OK**.

Edit Connect Line – Groups

Select all connect lines > Editor > Edit Connect Line > Groups

If you have grouping variables on a boxplot, interval plot, or bar chart, you can assign different attributes to each group or remove the grouping variable.

You can also add a grouping variable to scatterplots, matrix plots, and time series plots.

Dialog box items

Categorical variables for attribute assignment: Enter up to four columns of categorical grouping variables to assign different attributes for each group and display a legend. (You should always add at least one less attribute assignment variable than the number of categorical variables included in the graph.)

Apply attribute variables to other data displays: Check to update all data displays, such as symbols and connect lines, to use the same attribute variables as the connect line.

To assign attributes based on grouping variables

1 Select and double-click all boxes, bars, connect lines, dots, interval bars, or project lines. See Selecting groups and single items.

2 Click the **Groups** tab.

3 In **Categorical variables for attribute assignments**, enter up to four columns of categorical grouping variables for bar chart and three for other graphs. Minitab assigns different attributes to each group and may display a legend.

4 If you like, check **Apply attribute variable to other data displays** to assign the group attributes to all data displays on the graph. (Not available with dotplots.)

5 Click **OK**.

Examples of editing connect lines (bar chart)

In the Example of a clustered bar chart of counts, you examine the number of rejected door panels for each type of paint flaw, clustered by time period. You want to add and customize the connect lines.

Groups

Add connect lines and a grouping variable.

1 Choose Editor > Add > Data Display.

2 Under **Data Display**, check **Connect line**.

3 Click **OK**.

4 Double-click the connect line.

5 Click the **Groups** tab.

6 In **Categorical variables for attribute assignment**, enter **Flaws**.

7 Click **OK**.
Attributes
Change the line type and width.
1. Select and double-click all connect lines.
2. Under Lines, choose Custom.
 - From Type, choose _________
 - From Size, choose 2.
3. Click OK.

Connect options
Change the connection function.
1. Select and double-click all connect lines.
2. Click the Connect Options tab.
3. Under Connection function, choose Step.
 Then choose Center.
4. Click OK.

Chart options
Change the bar order and scale.
1. Select and double-click all connect lines.
2. Click the Chart Options tab.
3. Under Order Main X Groups Based On, choose Increasing Y.
4. Check Show Y as Percent.
5. Click OK.

Examples of editing connect line (empirical cdf)
In the Example of an empirical cdf graph, you assess the flammability of a new fabric. You want to customize the connect line.
Attributes

Change the connect line type and color.

1. Double-click the connect line.
2. Under **Symbols**, choose **Custom**.
 - From **Type**, choose .
 - From **Color**, choose .
3. Click **OK**.

Options

Change the connection function.

1. Double-click the connect line.
2. Click the **Options** tab.
3. Under **Connection function**, choose **Straight**.
4. Click **OK**.

Examples of editing connect line (scatterplot)

In the Example of a simple scatterplot, you examine the relationship between voltage remaining in your batteries immediately after a flash and the length of time required for a battery to be ready to support another flash. You want to add and customize the connect lines.

Note
Similar connect line editing functions are available for matrix plots.

Groups

Add a grouping variable.

1. Choose **Editor > Add > Data Display**.
2. Under **Data Display**, check **Connect Line**.
3. Click **OK**.
4. Double-click the connect line.
5. Click the **Groups** tab.
6. In **Categorical variables for grouping**, enter **Formulation**.
7. Check **Apply same grouping to other data displays**. Click **OK**.
Attributes
Change the symbol type and color for each group.
1. Select and double-click the black line (Formulation = New). See Selecting groups and single items for details.
2. Under Lines, choose Custom.
 • From Color, choose []
3. Click OK.
4. Select and double-click the red line (Formulation = Old).
5. Under Lines, choose Custom.
 • From Type, choose __________
 • From Color, choose []
6. Click OK.

Options
Change the connection order.
1. Select and double-click all connect lines.
2. Click the Options tab.
3. Under Connection order, choose Increasing Y.
4. Click OK.

Jitter
Add random offset (jitter) points to reveal overlapping points.
1. Select and double-click all connect lines.
2. Click the Jitter tab.
3. Check Add jitter to direction.
4. Click OK.

Examples of editing connect lines (time series plot)
In the Example of a simple time series plot, you track a company's quarterly sales over three years. You want to customize the connect line.
Attributes
Change the line type, color, and size.
1. Double-click the connect line.
2. Under Lines, choose Custom.
 • From Type, choose .
 • From Color, choose .
3. Click OK.

Groups
Add a grouping variable.
1. Select and double-click all connect lines.
3. Click the Groups tab.
4. In Categorical variables for grouping variables, enter Year.
5. Click OK.

Options
1. Select and double-click all connect lines.
2. Double-click the connect lines.
3. Click the Options tab.
4. Under Connection function, choose Step. Then choose Center.
4. Click OK.

Examples of editing connect lines (interval plot)
In the Example of a interval plot with multiple y's and groups, you assess the consistency of plastic pipe diameters. You want to add and customize the connect lines.

Note: Similar connect line editing functions are available for boxplots and individual value plots.
Groups
Assign attributes based on a grouping variable.
1. Choose Editor > Add > Data Display.
2. Under Data Display, check Mean connect line.
3. Click OK.
4. Double-click the connect line.
5. Click the Groups tab.
7. Check Apply attribute variables to other data displays. Click OK.

Attributes
Change the type and color of the connect line for each group.
1. Select and double-click the connect line for Machine = 1. See Selecting groups and single items for details.
2. Under Lines, choose Custom.
 - From Color, choose 2.
 - From Size, choose 2.
3. Click OK.
4. Select and double-click the connect line for Machine = 2.
5. Under Lines, choose Custom.
 - From Type, choose 2.
 - From Color, choose 2.
6. Click OK.

Options
Change the connection function.
1. Select and double-click all connect lines.
2. Click the Options tab.
3. Under Connection function, choose Step. Then choose Center.
4. Click OK.

Contour Lines
Edit Contour Lines – Attributes
Select contour lines > Editor > Edit Contour Lines > Attributes
Use to customize contour lines attributes.

Dialog box items
Contour Lines
 Automatic: Choose to accept default contour lines attributes.
 Solid black lines: Choose to use solid black lines for each contour level.
 Varying attributes: Choose to have Minitab assign different attributes for each contour line.
Custom attributes: Choose to assign attributes individually for each contour line, then choose a type, color, and size for each line.

- Levels: Identifies the z-value of each contour line. This column does not take any input.
- Type: Choose a line type.
- Color: Choose a line color.
- Size: Choose a line width.

To change contour line attributes
1. Double-click any contour line.
2. Under Contour lines, choose one of the following:
 - Automatic to accept the default contour line attributes.
 - Solid black lines to use solid black lines for each contour line.
 - Varying attributes to have Minitab assign different attributes for each contour line.
 - Custom attributes to assign attributes individually for each contour line, then choose a type, color, and size for each line. Row 1 is for the lowest z-values.
 - From Type, choose a line type.
 - From Color, choose a line color.
 - From Size, choose a line width.
3. Click OK.

Edit Contour Lines – Contour Labels
Select contour lines > Editor > Edit Contour Lines > Contour Labels
Use to show or hide contour labels, which indicate the value of each contour line.

Dialog box items
- Contour Labels
 - Automatic: Choose to accept the default labels. Minitab displays contour labels if the plot has solid black contour lines but no areas. (You can change the line type in the in Attributes tab.) Minitab displays a legend if the plot has areas, varying line attributes, or custom line attributes.
 - Show labels: Choose to display contour labels.
 - No Labels: Choose to hide contour labels.

To show or hide contour labels
1. Double-click any contour line.
2. Click the Contour Labels tab.
3. Under Contour Labels, choose one of the following:
 - Automatic to accept the default contour labels.
 - Show labels to display contour labels.
 - No Labels to hide contour labels.
4. Click OK.

Edit Contour Lines – Font
Select contour label > Edit Contour Lines > Font
Use to customize contour label font and attributes.

Dialog box items
- Font: Enter a font name.
- Style
 - Bold: Check to make the text bold.
 - Italic: Check to italicize the text.
 - Underline: Check to underline the text.
- Size: Enter a font size.
Customizing and Editing Graphs

Color: Choose a text color.

Preview: Displays sample text with the selected attributes applied. This box does not accept input.

To edit the contour label font

1. Double-click any contour label.
2. Click the **Font** tab.
3. To change font attributes, do any of the following:
 - Under **Font**, enter a font name.
 - Under **Style**, check **Bold**, **Italic**, and/or **Underline**.
 - Under **Size**, enter a font size.
 - From **Color**, choose a text color.
4. Click **OK**.

Edit Contour Lines – Font Background

Select contour lines > Editor > Edit Contour Lines > Font Background

Use to customize font background fill and border attributes for the contour labels.

Dialog box items

Fill Pattern
- **Automatic:** Choose to accept the default fill pattern.
- **Custom:** Choose to customize the fill pattern.
 - **Type:** Choose a fill type.
 - **Background color:** Choose a background color.

Borders and Fill Lines
- **Automatic:** Choose to accept the default border and fill lines.
- **Custom:** Choose to customize the border and fill lines.
 - **Type:** Choose a border line type.
 - **Color:** Choose a border and fill line color.
 - **Size:** Choose a border line width.

To change the contour label background

1. Double-click any contour line.
2. Click the **Font Background** tab.
3. Under **Fill Pattern**, choose one of the following:
 - **Automatic** to accept the default fill pattern.
 - **Custom** to customize the fill pattern.
 - From **Type**, choose a fill type.
 - From **Background color**, choose a background color.
4. Under **Borders and Fill Lines**, choose one of the following:
 - **Automatic** to accept the default border and fill lines.
 - **Custom** to customize the border and fill lines.
 - From **Type**, choose a border line type.
 - From **Color**, choose a border and fill line color.
 - From **Size**, choose a border line width.
5. Click **OK**.

Edit Contour Lines – Options

Select contour lines > Editor > Edit Contour Lines > Options

Use to control the number and placement of contour levels, as well as the resolution of the mesh.
Minitab establishes a series of regular x- and y-values, called a mesh, then estimates where the different contour levels will cross each rectangle of the mesh.

5 by 5 mesh

15 by 15 mesh

Note Gridlines were added for reference, but do not necessarily indicate the exact layout of the mesh used to plot the contours.

By default, if your data form a regular x-y mesh, Minitab uses this mesh to estimate the contours. Otherwise, Minitab interpolates values for a regular 15 by 15 mesh. Alternatively, you can specify the number of x- and y-values to include:

- For higher resolution, use more values.
- For lower resolution, use fewer values.

Note Using a mesh with more and smaller intervals than exist between data points may appear to add more resolution to the image, but the added detail may not be meaningful.

Dialog box items

Contour Levels
- **Automatic**: Choose to accept the default number of contour levels.
- **Number**: Choose to specify the number of contour levels, then enter a number between 2 and 11.
- **Values**: Choose to specify the z-values to plot as contours, then enter from 2 to 11 values.

Mesh for Interpolating Surface
- **Automatic**: Choose to accept the default mesh.
- **Custom**: Choose to customize the mesh.
 - **X-Mesh Number**: Enter the number of x-values to include in the mesh.
 - **Y-Mesh Number**: Enter the number of y-values to include in the mesh.

Boundary z-value: Enter a z-value to be used at the boundaries (corners and edges) of the plot if your data do not form a regular mesh. By default, Minitab uses the minimum z-value. (If your data follow a regular mesh, this option is not available.)

To change the number of contours and mesh
1. Double-click any contour area or contour line.
2. Click the **Options** tab.
3. Under **Contour Levels**, choose one of the following:
 - **Automatic** to accept the default number of contour levels.
 - **Number** to specify the number of contour levels, then enter a number between 2 and 11.
 - **Values** to specify the z-values to plot as contours, then enter from 2 to 11 values.
4. Under **Mesh for Interpolating Surface**, choose one of the following:
 - **Automatic** to accept the default mesh.
 - **Custom** to customize the mesh.
 - In **X-Mesh Number**, enter the number of x-values to include in the mesh.
 - In **Y-Mesh Number**, enter the number of y-values to include in the mesh.
5. In **Boundary z-value**, enter a z-value to be used at the boundaries (corners and edges) of the plot if your data do not form a regular mesh. By default, Minitab uses the minimum z-value. (If your data follow a regular mesh, this option is not available. This option is not available with response surface or mixtures plots.)
6. Click **OK**.
Examples of editing contour lines
In Example of a contour plot, you examine the relationship between the time and temperature at which a frozen food was reheated and the quality of the final product. You want to customize the plot.

Attributes
Remove the areas and change the default line colors.
1. Select the areas. Click x on the toolbar to delete them.
2. Double-click a contour line.
4. Click OK.

Contour labels, font, and font background
Change the default colors and size.
1. Double-click a contour line.
2. Click the Contour Labels tab.
3. Under Contour Labels, choose Show Labels.
4. Click the Font tab.
5. From Size, choose 14.
6. Click the Font Background tab.
7. Under Fill Pattern, choose Custom.
 • From Background Color, choose □
8. Click OK.

Options
Increase the number of contour levels.
1. Double-click a contour line.
2. Click the Contour Labels tab.
4. Click the Options tab.
5. Under Contour Levels, choose Number and type 8.
6. Click OK.

Dots

<table>
<thead>
<tr>
<th>Graph</th>
<th>Attributes</th>
<th>Groups</th>
<th>Binning</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal Plot (with dotplots)</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dotplot</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Edit Dots – Attributes
Select dots > Editor > Edit Dot > Attributes
Use to customize dot attributes on a dotplot or marginal plot with dotplots.
Dialog box items

Symbols

- **Automatic**: Choose to accept the default symbol attributes.
- **Custom**: Choose to customize the symbol attributes.
 - **Type**: Choose a symbol type.
 - **Color**: Choose a symbol color.
 - **Size**: Choose a symbol size.

To change the symbol or dot attributes

1. Select then double-click one or more symbols or dots. See Selecting groups and single items.
2. Under **Symbols**, choose one of the following:
 - **Automatic** to accept the default symbol attributes.
 - **Custom** to customize the symbol attributes.
 - From **Type**, choose a symbol type.
 - From **Color**, choose a symbol color.
 - From **Size**, choose a symbol size.
3. Click **OK**.

Edit Dots – Binning

Select dots > Editor > Edit Dots > Binning

Use to define bin intervals by midpoints or cutpoints.

Dialog box items

Interval Type

- **Midpoint**: Choose to define bin intervals by midpoints.
- **Cutpoint**: Choose to define bin intervals by cutpoints.

Interval Definition

- **Automatic**: Choose to accept the default number of bins.
- **Number of intervals**: Choose and enter the number of bins.
- **Midpoint/Cutpoint positions**: Choose and enter custom midpoint or cutpoint positions.

To change the binning

1. Double-click the area, bars, dots, symbols, or lowess smoother.
2. Click the **Binning** tab.
3. Under **Interval Type**, choose **Midpoint** or **Cutpoint** to define bin intervals by midpoints or cutpoints.
4. Under **Interval Definition**, choose one of the following to determine the number of bins:
 - **Automatic** to accept the default number of bins.
 - **Number of intervals**, then enter the number of bins.
 - **Midpoint/Cutpoint positions**, then enter custom midpoint or cutpoint positions.
5. Click **OK**.

Edit Dots – Groups

Select all dots > Editor > Edit Dots > Groups

If you have grouping variables on a dotplot, you can assign different attributes to each group.

Dialog box items

- **Categorical variables for attribute assignment**: Enter up to four columns of categorical grouping variables to assign different attributes to each group.
Customizing and Editing Graphs

To change the grouping variables
1. Select and double-click all areas, symbols, project lines, bars, or connect lines. See Selecting groups and single items.
2. Click the Groups tab.
3. In Categorical variables for grouping, enter up to four columns containing categorical grouping variables. Minitab assigns different attributes to each group and displays a legend.
4. If you like, check Apply same grouping to other data displays to assign the group attributes to all data displays on the graph. (Not available with histograms, probability plots, or empirical cdf graphs.)
5. Click OK.

Edit Dots – Options
Select all dots > Editor > Edit Dots > Options
If you have grouping variables on a dotplot, you can stack the groups rather than display them separately.

Dialog box items
Stack dots of innermost categorical variable: Check to stack the groups.

To stack groups
1. Double-click the dots.
2. Click the Options tab.
3. Check Stack dots of innermost categorical variable.
4. Click OK.

Examples of editing dots
In the Example of a dotplot with groups, you compare the variability in camshaft length between two suppliers. You want to customize the dots.

Note: Dot attributes editing is available for marginal plots with dotplots.

Attributes
Change the dot color for one group.
1. Select and double-click the lowest group (Supplier B). See Selecting groups and single items for details.
2. Under Symbols, choose Custom.
 - From Color, choose .
3. Click OK.
Customizing Graphs

Options
Stack the two groups.
1. Select and double-click all dots.
2. Click the Options tab.
3. Check Stack dots of innermost categorical variable.
4. Click OK.

Binning
Change the number of bins.
1. Select and double-click all dots.
2. Click the Binning tab.
3. Under Interval Definition, choose Number of Intervals. Type 20.
4. Click OK.

Interval Bar
Edit Interval Bar – Attributes
Select interval bar > Editor > Edit Interval Bar > Attributes
Use to customize interval bar attributes.

Dialog box items
Lines
- Automatic: Choose to accept the default interval bar attributes.
- Custom: Choose to customize the interval bar attributes.
 - Type: Choose a line type.
 - Color: Choose a line color.
 - Size: Choose a line width.

To change line and interval bar attributes
1. Select and double-click one or more lines or interval bars. See Selecting groups and single items.
2. Under Lines, choose one of the following:
 - Automatic to accept the default line attributes.
 - Custom to customize the line attributes.
 - From Type, choose a line type.

Customizing and Editing Graphs

- From **Color**, choose a line color.
- From **Size**, choose a line width.

3 Click **OK**.

Edit Interval Bar – Groups

Select all bars > Editor > Edit Interval Bar > Groups

If you have grouping variables on an interval plot, you can assign different attributes to each group.

Dialog box items

- **Categorical variables for attribute assignment**: Enter up to four columns of categorical grouping variables to assign different attributes to each group and display a legend.
- **Apply attribute variables to other data displays**: Check to update all data displays, such as symbols and connect lines, to use the same attribute variables as the interval bar.

To assign attributes based on grouping variables

1 Select and double-click all boxes, bars, connect lines, dots, interval bars, or project lines. See Selecting groups and single items.
2 Click the **Groups** tab.
3 In **Categorical variables for attribute assignments**, enter up to four columns of categorical grouping variables for bar chart and three for other graphs. Minitab assigns different attributes to each group and may display a legend.
4 If you like, check **Apply attribute variable to other data displays** to assign the group attributes to all data displays on the graph. (Not available with dotplots.)
5 Click **OK**.

Edit Interval Bar – Options

Select interval bars > Editor > Edit Interval Bar > Options

Use to customize interval bar type, display one- or two-sided intervals, and use a pooled standard deviation to calculate the intervals.

Dialog box items

- **Type of Interval**
 - **Standard error**: Choose to display standard error bars, where the error bars extend one or more standard errors away from the mean.
 - **Multiple**: Enter a positive number to be used as the multiplier for standard errors (1 is the default).
 - **Confidence interval**: Choose to display confidence intervals. The confidence intervals assume a normal distribution for the data and use t-distribution critical values.
 - **Level**: Enter a number between 0 and 100 to specify the confidence level. The default is 95%. The interval bar endpoints correspond to the values of a confidence interval for the mean.
 - **Bonferroni**: Check to calculate Bonferroni intervals.
 - **Side**: Choose the location of the bars. When you choose two-sided, bars are drawn above and below the mean. Upper one-sided gives bars above; lower one-sided draws bars below the mean.
 For confidence intervals (default), the one-sided bars are shorter than the same side of the two-sided bars because Minitab uses a one-sided test. For standard error bars, the distance that error bars extend above or below the mean remains the same regardless of the selected side.
 - **Pool error across groups**: Check to use the pooled degrees of freedom to calculate the critical value from the t-distribution for confidence interval bars, or a pooled standard error instead of calculating the error for each subgroup for standard error bars.

To change the interval bar options

1 Select and double-click all interval bars. See Selecting groups and single items.
2 Click the **Options** tab.
3 Under **Type of Interval**, choose one of the following:
 - **Standard error** to display standard error bars, where the error bars extend one or more standard errors away from the mean.
In Multiple, enter a positive number to be used as the multiplier for standard errors (1 is the default).

- **Confidence interval** to display confidence intervals. The confidence intervals assume a normal distribution for the data and use t-distribution critical values.
 - In Level, enter a number between 0 and 100 to specify the confidence level. The default is 95%. The interval bar endpoints correspond to the values of a confidence interval for the mean.
 - Check **Bonferroni** to calculate Bonferroni intervals.

4 From **Side**, choose the location of the bars. When you choose two-sided, bars are drawn above and below the mean. Upper one-sided gives bars above; lower one-sided draws bars below the mean. For confidence intervals (default), the one-sided bars are shorter than the same side of the two-sided bars because Minitab uses a one-sided test. For standard error bars, the distance that error bars extend above or below the mean remains the same regardless of the selected side.

5 Check **Pool error across groups** to use the pooled degrees of freedom to calculate the critical value from the t-distribution for confidence interval bars, or a pooled standard error instead of calculating the error for each subgroup for standard error bars.

6 Click **OK**.

Examples of editing interval bars (interval plot)

In the Example of a interval plot with multiple y’s and groups, you assess the consistency of plastic pipe diameters. You want to customize the interval bars.

Note Similar area editing functions are available for individual value plots.

Groups

Assign attributes based on a grouping variable.

1 Select and double-click all interval bars.
2 Click the **Groups** tab.
3 In **Categorical variables for attribute assignment**, enter Machine.
4 Check **Apply attribute variable to other data displays**.
5 Click **OK**.

Attributes

Change the line type and color for one group.

1 Select and double-click the black interval bars (Machine = 1). See Selecting groups and single items for details.
2 Under **Lines**, choose **Custom**.
 - From **Type**, choose .
 - From **Color**, choose .
3 Click **OK**.
Customizing and Editing Graphs

Options
Change the confidence interval bar to a standard error bar.
1. Select and double-click all interval bars.
2. Click the Options tab.
3. Under Type of Interval, choose Standard error.
4. Click OK.

Pie
Edit Pie – Attributes
Select pie > Editor > Edit Pie > Attributes
Use to customize slice background fill and border attributes.

Dialog box items
Fill Pattern
- Automatic: Choose to accept the default fill pattern.
- Custom: Choose customize the fill pattern.
 - Type: Choose a fill type.
 - Background color: Choose a background color.
Borders and Fill Lines
- Automatic: Choose to accept the default border and fill lines.
- Custom: Choose to customize the border and fill lines.
 - Type: Choose a border line type.
 - Color: Choose a border and fill line color.
 - Size: Choose a border line width.

To change fill attributes (areas, bars, boxes, and pie slices)
1. Select and double-click one or more areas, bars, boxes, or pie slices. See Selecting groups and single items.
2. Under Fill Pattern, choose one of the following:
 - Automatic to accept the default fill pattern.
 - Custom to customize the fill pattern.
 - From Type, choose a fill type.
 - From Background color, choose a background color.
3. Under Borders and Fill Lines, choose one of the following:
 - Automatic to accept the default border and fill lines.
 - Custom to customize the border and fill lines.
 - From Type, choose a border line type.
 - From Color, choose a border and fill line color.
 - From Size, choose a border line width.
4. Click OK.
Edit Pie – Options

Select pie chart > Editor > Edit Pie
Select pie chart > Editor > Graph Options

Use to customize slice order, pie diameter, slice starting angle, and the minimum category size for separate slices.

Dialog box items

Order slices by

- **Default**: Choose to accept the default slice order. For raw data, the slice order is increasing value for numeric and date/time data; or alphabetical for text data. (To use a value order other than alphabetical for text categories, see Ordering text categories.) For summarized data, the default slice order is always the order in which the categories appear in the worksheet; any value order is ignored.

- **Increasing volume**: Choose to order slices from smallest to largest.

- **Decreasing volume**: Choose to order slices from largest to smallest.

Pie Diameter

- **Automatic**: Choose to accept the default pie diameter.

- **Custom**: Choose to customize the diameter size, then enter a diameter size greater than 0 and less than or equal to one.

- **Start angle**: Type the starting angle in degrees for the slices. By default, slices start at 90° (12 o’clock) and go clockwise.

- **Combine slices of this percent or less**: Type a minimum percentage for separate slices. Categories with less than or equal to this percentage are grouped into a slice named Other, which is always placed last.

To change pie options

1. Double-click the pie.
2. Click the Options tab.
3. Under **Order slices by**, choose one of the following:
 - **Default**: Choose to accept the default slice order. For raw data, the slice order is increasing value for numeric and date/time data; or alphabetical for text data. For summarized data, the default slice order is the order in which the categories appear in the worksheet.
 - **Increasing volume**: to order slices from smallest to largest.
 - **Decreasing volume**: to order slices from largest to smallest.
 - From **Type**, choose a fill type.
 - From **Background color**, choose a color.
4. Under **Pie Diameter**, choose one of the following:
 - **Automatic**: to accept the default pie diameter.
 - **Custom**: to customize the diameter size, then enter a diameter size greater than 0 and less than or equal to one.
5. In **Start angle**, type the starting angle in degrees for the slices. By default, slices start at 90° (12 o’clock) and go clockwise.
6. In **Combine slices of this percent or less**, type a minimum percentage for separate slices. Categories with less than or equal to this percentage are grouped into a slice named Others, which is always placed last.
7. Click OK.

Edit Pie – Explode

Select pie slices > Editor > Edit Pie > Explode

Use to explode slices (pull them away from the others) to emphasize specific categories.

Dialog box items

- **Explode slice**: Check to move a slice away from the center of the pie for emphasis.

- **Explode length**: Enter an explode distance between 0 and 1.

To explode pie slices

1. Select and double-click one or more slices. See Selecting groups and single items.
2. Click the Explode tab.
3. Check **Explode Slice**. In **Explode length**, enter a value between 0 and 1.
Customizing and Editing Graphs

4 Click OK.

Examples of editing the pie

In the Example of a pie chart, you identified the most common causes of air loss in tires. You want to customize the pie chart.

Attributes

Change the fill pattern and border size for the largest slice.

1 Select and double-click the largest pie slice (Cause = Puncture). See Selecting groups and single items for details.
2 Under Fill Pattern, choose Custom.
3 Click OK.

Explode

Explode or pull the largest slice away from the others.

1 Select and double-click the largest pie slice (Cause = Puncture).
2 Click the Explode tab.
3 Check Explode slice.
4 Click OK.

Options

Change the slice order and increase the pie diameter.

1 Double-click the pie.
2 Click the Options tab.
3 Under Order slices by, choose Increasing volume.
4 Under Pie Diameter, choose Custom. Then enter 0.8.
5 Click OK.
Customizing Graphs

Project Lines

<table>
<thead>
<tr>
<th>Graph</th>
<th>Attributes</th>
<th>Groups</th>
<th>Options</th>
<th>Project Options</th>
<th>Chart Options</th>
<th>Jitter</th>
<th>Binning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scatterplot</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Plot</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histogram</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bar Chart</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Series</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D Scatterplot</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D Surface Plot</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Edit Project Lines – Attributes

Select project lines > Editor > Edit Project Lines > Attributes

Use to customize project lines attributes.

Dialog box items

Lines

- **Automatic**: Choose to accept the default project lines.
- **Custom**: Choose to customize the project lines.

 - **Type**: Choose a line type.
 - **Color**: Choose a line color.
 - **Size**: Choose a line width.

To change line and interval bar attributes

1. Select and double-click one or more lines or interval bars. See Selecting groups and single items.
2. Under Lines, choose one of the following:
 - **Automatic** to accept the default line attributes.
 - **Custom** to customize the line attributes.
 - From **Type**, choose a line type.
 - From **Color**, choose a line color.
 - From **Size**, choose a line width.
3. Click **OK**.

Edit Project Lines – Groups

Select all project lines > Editor > Edit Project Lines > Groups

Use to add, remove, or change the grouping variables on a scatterplot, matrix plot, histogram, time series plot, and 3D plots.

You can also add grouping variables to bar charts.

Dialog box items

- **Categorical variables for grouping**: Enter up to four columns of grouping variables for bar chart and three for other graphs to assign different attributes to each group and display a legend.
- **Apply same grouping to other data displays**: Check to update all data displays, such as symbols and connect line, to use the same grouping variables as the project lines.

To change the grouping variables

1. Select and double-click all areas, symbols, project lines, bars, or connect lines. See Selecting groups and single items.
Customizing and Editing Graphs

2 Click the **Groups** tab.
3 In **Categorical variables for grouping**, enter up to four columns containing categorical grouping variables. Minitab assigns different attributes to each group and displays a legend.
4 If you like, check **Apply same grouping to other data displays** to assign the group attributes to all data displays on the graph. (Not available with histograms, probability plots, or empirical cdf graphs.)
5 Click **OK**.

Edit Project Lines – Groups

Select all project lines > Editor > Edit Project Line > Groups

If you have grouping variables on a bar chart, you can assign different attributes to each group or remove the grouping variable. The columns must be categorical variables used in creating the graph.

You can also add a grouping variable to scatterplots, matrix plots, histograms, time series plots, and 3D scatterplots.

Dialog box items

Categorical variables for attribute assignment: Enter up to four columns of grouping variables for bar chart and three for other graphs to assign different attributes to each group and display a legend.

Apply attribute variables to other data displays: Check to update all data displays, such as bars and connect lines, to use the same attribute variables as the project lines.

To assign attributes based on grouping variables

1 Select and double-click all boxes, bars, connect lines, dots, interval bars, or project lines. See Selecting groups and single items.
2 Click the **Groups** tab.
3 In **Categorical variables for attribute assignments**, enter up to four columns of categorical grouping variables for bar chart and three for other graphs. Minitab assigns different attributes to each group and may display a legend.
4 If you like, check **Apply attribute variable to other data displays** to assign the group attributes to all data displays on the graph. (Not available with dotplots.)
5 Click **OK**.

Edit Project Lines – Options/Project Options

Select project lines > Editor > Edit Project Lines > Options

Select project lines > Editor > Edit Project Lines > Project Options (bar chart)

Use to customize projection direction and base position for a scatterplot, matrix plot, histogram, bar chart, and time series plot.

You can also change the options for a 3D scatterplot and 3D surface plot.

Dialog box items

Projection Direction

Toward Y scale: Choose to extend lines horizontally from each data point toward the y-axis.

Toward X scale: Choose to extend lines vertically from each data point toward the x-axis.

Base Position

Auto: Choose to use the default base.

Custom: Enter a number for the base. Lines extend from the data value to the base.

To change project line options

1 Double-click the project line. See Selecting groups and single items.
2 Click the **Options** tab.
3 Under **Projection Direction**, choose one of the following:
 - **Toward Y scale** to extend lines horizontally from each data point toward the y-axis.
 - **Toward X scale** to extend lines vertically from each data point toward the x-axis.
4 Under **Base Position**, choose one of the following:
 - **Auto** to use the default base.
 - **Custom** to define your own base, then enter a number for the base. Lines extend from the data value to the base.
Tip You can add a horizontal or vertical base line by adding a reference line that has the same data value as your base. See Reference Line Overview.

5 Click OK.

Edit Project Lines — Options

Select project lines > Editor > Edit Project Lines > Options

Use to customize projection direction and base position on a 3D scatterplot or 3D surface plot.

You can also change the options for a scatterplot matrix plot, histogram, bar chart, and time series plot.

Dialog box items

Projection Direction
- **Toward YZ plane**: Choose to extend lines from each data point toward the yz-plane.
- **Toward XZ plane**: Choose to extend lines from each data point toward the xz-plane.
- **Toward XY plane**: Choose to extend lines from each data point toward the xy-plane.

Base Position
- **Auto**: Choose to use the default base, which is the data minimum or 0.
- **Custom**: Enter a number for the base. Lines extend from the data value to the base.

To change the project line options

1 Double-click the project lines. See Selecting groups and single items.

2 Click the **Options** tab.

3 Under **Projection Direction**, choose one of the following:
 - **Toward YZ plane** to extend lines from each data point toward the yz-plane.
 - **Toward XZ plane** to extend lines from each data point toward the xz-plane.
 - **Toward XY plane** to extend lines from each data point toward the xy-plane.

4 Under **Base Position**, choose one of the following:
 - **Auto** to use the default base.
 - **Custom** to define your own base, then enter a number for the base. Lines extend from the data value to the base.

Tip You can add a horizontal or vertical base line by adding a reference line that has the same data value as the base. See Reference Line Overview.

5 Click OK.

Edit Project Lines — Chart Options

Select project lines > Editor > Edit Project Lines > Chart Options

Select bar chart > Editor > Graph Options

Use to specify increasing or decreasing bar order, choose a cumulative y-scale, or choose a percent scale for the y-axis.

If you have more than one categorical variable, use to specify the grouping level for calculating the scale and to stack data.

Dialog box items

Order Main X Groups Based On Choose the order for the bars. See Ordering Category Groups Based on Y-Axis Values.

- **Default**: Choose to use the default order for bars. For bar charts of counts of unique values and functions of a variable, the default order is ascending, either numerically, chronologically, or alphabetically. (To use a value order other than alphabetical for text categories, see Ordering text categories.) For bar charts of values from a table, the default order is always the order in which the categories appear in the worksheet; any value order is ignored.

- **Increasing Y**: Choose to order bars from smallest to largest y-values.

- **Decreasing Y**: Choose to order bars from largest to smallest y-values.

Note If the data have multiple categorical variables, Minitab orders the bars by the sum of chart values for the outermost cluster groups.

Show Y as Percent Check to use a percent scale on the y-axis. See Using Percent Scales and Accumulating Y Across X.
Accumulate Y across X: Check to use a cumulative scale on the y-axis. See Using Percent Scales and Accumulating Y Across X.

Take Percent and/or Accumulate If you have two or more categorical variables, specify for which grouping level you want to show y as a percent and/or accumulate y across x. The options available depend on the number of categorical variables that are included in the bar chart. For more information, see Using Percent Scales and Accumulating Y Across X.

 Across all categories: Choose to apply a percent scale and/or cumulative scale across all categories.
 Within categories at level 1 (outermost): Choose to apply a percent scale and/or cumulative scale within categories at the outermost scale level only.
 Within categories at level 2: Choose to apply a percent scale and/or cumulative scale within categories at the second grouping level from the bottom only.
 Within categories at level 3: Choose to apply a percent scale and/or cumulative scale within categories at the third grouping level from the bottom only.

Stack values for last categorical variable: Check to stack the categories for the last categorical variable. Each category is represented by a separate segment of a bar. (Only available if you have two or more categorical variables.)

To change the bar order and y-scale
1 Select and double-click all bars, connect lines, project lines, or symbols. See Selecting groups and single items.
2 Click the Chart Options tab.
3 Under Order Main X Groups Based On, choose one of the following:
 • Default to arrange the bars based on the variable type: numeric in ascending order, date/time in increasing chronological order, and text in alphabetical order. To change the display order for text categories, see Ordering text categories.
 • Increasing Y to order bars from smallest to largest y-values.
 • Decreasing Y to order bars from largest to smallest y-values.
 See Ordering Category Groups Based on Y-Axis Values.
4 Check Show Y as Percent to use a percent scale on the y-axis. See Using Percent Scales and Accumulating Y Across X.
5 Check Accumulate Y across X to use a cumulative scale on the y-axis. See Using Percent Scales and Accumulating Y Across X.
6 Under Take Percent and/or Accumulate, choose one of the following. The options available depend on how many categorical variables are included in the bar chart. For more information, see Using Percent Scales and Accumulating Y Across X.
 • Across all categories to apply a percent scale and/or cumulative scale across all categories.
 • Within categories at level 1 (outermost) to apply a percent scale and/or cumulative scale within categories at the outermost scale level only.
 • Within categories at level 2 to apply a percent scale and/or cumulative scale within categories at the second grouping level from the bottom only.
 • Within categories at level 3 to apply a percent scale and/or cumulative scale within categories at the third grouping level from the bottom only.
7 Check Stack values for last categorical variable to stack the categories for the last categorical variable. Each category is represented by a separate segment of a bar. (Only available if you have two or more categorical variables.)
8 Click OK.

Edit Project Lines – Jitter
Select all project lines > Editor > Edit Project Lines > Jitter
Use to randomly offset (jitter) points to reveal overlapping points on a scatterplot or matrix plot. Because project lines extend from the points, Minitab adjusts the project lines when the points are offset.
You can jitter data points on scatterplots, matrix plots, and 3D scatterplots.

Dialog box items
 • Add jitter to direction: Check to offset points so they do not overlap.
 X: Type a number from 0 to 1 to specify the amount of jitter in the x-direction.
 Y: Type a number from 0 to 1 to specify the amount of jitter in the y-direction.
 Z: (3D scatterplot only) Type a number from 0 to 1 to specify the amount of jitter in the z-direction.
To add jitter
1. Select and double-click all areas, connect lines, project lines, or symbols. See Selecting groups and single items.
2. Click the Jitter tab.
3. Check Add jitter to direction to offset points so they do not overlap. Then:
 - In X, type a number from 0 to 1 to specify the amount of jitter in the x-direction.
 - In Y, type a number from 0 to 1 to specify the amount of jitter in the y-direction.
 - (3D scatterplot only) In Z, type a number from 0 to 1 to specify the amount of jitter in the z-direction.
4. Click OK.

Examples of editing project lines (3D surface plot)
In the Example of a 3D surface plot, you determine the optimal time and temperature for reheating a new frozen entree. You want to add and customize the project lines.

Attributes
Add project lines and change the line color and size.
1. Choose Editor > Add > Data Display.
2. Under Data Display, check Project Lines.
3. Click OK.
4. Select and double-click all project lines.
5. Under Lines, choose Custom.
 - From Color, choose a.
 - From Size, choose 2.
6. Click OK.

Project options
Change the projection direction.
1. Select and double-click all project lines.
2. Click the Options tab.
4. Click OK.

Examples of editing project lines (bar chart)
In the Example of a clustered bar chart of counts, you examine the number of rejected door panels for each type of paint flaw, clustered by time period. You want to add and customize the project lines.
Groups
Add project lines and a grouping variable.
1 Choose Editor > Add > Data Display.
2 Under Data Display, check Project Lines.
3 Click OK.
4 Select and double-click all project lines.
5 Click the Groups tab.
6 In Categorical variables for attribute assignment, enter Period.
7 Click OK.

Attributes
Change the line color for one group.
1 Select and double-click the green project lines (Period = Night). See Selecting groups and single items for details.
2 Under Lines, choose Custom.
 • From Color, choose .
3 Click OK.

Project options
Change the projection direction.
1 Select and double-click all project lines.
2 Click the Project Options tab.
3 Under Projection Direction, choose Toward Y Scale.
4 Click OK.

Chart options
Stack the bars and change the scale.
1 Select and double-click all project lines.
2 Click the Chart Options tab.
3 Check Show Y as Percent.
4 Check Stack values of innermost categorical variable.
5 Click OK.
Examples of editing project lines (histogram)
In the Example of a simple histogram, you examine the amount of torque required to remove shampoo bottle caps. You want to add and customize the project lines.

Attributes
Add project lines and change their line type, color, and size.
1. Choose Editor > Add > Data Display.
2. Under Data Display, check Project Lines.
3. Click OK.
4. Select and double-click all project lines.
5. Under Lines, choose Custom.
 • From Type, choose _-.-._-.-.
 • From Color, choose #.
 • From Size, choose 2.
6. Click OK.

Options
Change the base.
1. Select and double-click all project lines.
2. Click the Options tab.
3. Under Base Position, choose Custom. Then enter 5.
4. Click OK.

Groups
Add a grouping variable.
1. Select and double-click all project lines.
3. Click the Options tab.
5. Click the Groups tab.
7. Click OK.

Panel
To improve visibility, display each group in a separate panel
1. Choose Editor > Panel.
2. In By variables with groups in separate panels, enter Machine.
3. Click OK.
Examples of editing project lines (scatterplot)

In the Example of a simple scatterplot, you examine the relationship between voltage remaining in your batteries immediately after a flash and the length of time required for a battery to be ready to support another flash. You want to add and customize the project lines.

Note Similar project lines editing functions are available for matrix plots and 3D scatterplots.

Attributes
Add project lines and change the line type and color.
1. Choose **Editor > Add > Data Display**.
2. Under **Data Display**, check **Project Lines**.
3. Click **OK**.
4. Select and double-click all project lines.
5. Under **Lines**, choose **Custom**.
 - From **Type**, choose — — — —.
 - From **Color**, choose
4. Click **OK**.

Jitter
Add random offset (jitter) points to see overlapping points.
1. Select and double-click all project lines.
2. Click the **Jitter** tab.
3. Check **Add jitter to direction**.
4. Click **OK**.

Options
Change the projection direction.
1. Select and double-click all project lines.
2. Click the **Jitter** tab.
3. Uncheck **Add jitter to direction**.
4. Click the **Options** tab.
5. Under **Projection Direction**, choose **Toward Y Scale**.
6. Click **OK**.
Groups
Add a grouping variable.
1. Select and double-click all project lines.
3. Click the Options tab.
5. Click the Groups tab.
6. In Categorical variables for grouping, enter Formulation.
7. Click OK.

Examples of editing project lines (time series plot)
In the Example of a simple time series plot, you track a company's quarterly sales over three years. You want to add and customize the project lines.

Attributes
Add project lines and change the line type and color.
1. Choose Editor > Add > Data Display.
2. Under Data Display, check Project Lines.
3. Click OK.
4. Select and double-click all project lines.
5. Under Lines, choose Custom.
 • From Type, choose . . .
 • From Color, choose .
6. Click OK.

Options
Change the base.
1. Select and double-click all project lines.
2. Click the Options tab.
4. Click OK.
Groups
Add a grouping variable.
1 Select and double-click all project lines.
2 Under Lines, choose Automatic.
3 Click the Options tab.
4 Under Base Position, choose Auto.
5 Click the Groups tab.
6 In Categorical variables for grouping, enter Year.
7 Click OK.

Surface
Edit Surface – Attributes
Select surface > Editor > Edit Surface > Attributes
Use to customize surface type and attributes on a 3D surface plot.

Dialog box items
Surface Type
Surface: Choose to display a smooth continuous surface.
Wireframe: Choose to display a grid, or wireframe.

Surface Pattern
Automatic: Choose to accept default surface attributes.
Custom: Choose to customize the surface attributes.
Surface color: Choose a surface color.
Wire color: (Wireframe only) Choose a line color for the wireframe.
Wire size: (Wireframe only) Choose a line width for the wireframe.

To change surface attributes
1 Double-click the surface.
2 Under Surface Type, choose one of the following:
 • Surface to display a smooth continuous surface.
 • Wireframe to display a grid, or wireframe.
3 Under Surface Pattern, choose one of the following:
 • Automatic to accept the default surface attributes.
 • Custom to customize the surface attributes.
 – From Surface color, choose a surface color.
 – (Wireframe only) From Wire color, choose a line color for the wireframe
 – (Wireframe only) From Wire size, choose a line width for the wireframe.
4 Click OK.

Edit Surface – Lights
Select surface > Editor > Edit Surface > Lights
Use to customize number, position, color, and brightness of the lights illuminating a 3D surface plot.

Note Lighting options do not affect wireframe plots. You can also alter light positions using the light rotation buttons on the 3D Graph Tools toolbar.

Dialog box items
Automatic: Choose to accept the default surface lighting.
Custom: Choose customize the surface lighting.
On: Check to turn on the light so that it illuminates the data surface. You can have up to three lights.

Relative Position Control the location of the light relative to the center of the graph space. Type a larger number to move the light in the positive direction parallel to the axis. Type a smaller number to move the light parallel to the axis in the negative direction. See below for illustrations and additional information.

- **X:** Type a number for the x-coordinate.
- **Y:** Type a number for the y-coordinate.
- **Z:** Type a number for the z-coordinate.

Color: Choose a color for the light.

Brightness: Type a value between 0 (darkest) and 100 (brightest) to control the brightness of all lights. See below for an illustration.

More on Relative Position

The x-, y-, and z-coordinates for light position are expressed relative to the center of the data region, which is coordinate 0 0 0. Coordinate units are designed to be consistent between x, y, and z, and are thus not related to the data measurement units.

The red dot above the graph in the figure at left represents Light 1 in its default position. The blue dot represents Light 2 in its default position. The coordinates for these positions are:

<table>
<thead>
<tr>
<th>Light</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Light 1 is positioned in the center of the graph space with respect to the x-axis (x = 0), but one unit in the positive direction with respect to both the y- and z-axes (y = 1 and z = 1). This gives it the appearance of being above and somewhat behind and to the right of the graph.

Light 2 is positioned directly below the graph space, centered with respect to the x- and y-axes (x = 0 and y = 0), but one unit in the negative z direction (z = -1).

In the figure at left, x and y for Light 1 have been set to zero, so it is centered directly above the graph:

<table>
<thead>
<tr>
<th>Light</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Notice that the red light illuminates more of the nearer face of the graph than in the previous figure.
In this next figure (left), z for Light 1 has been increased to 2, so it is higher above the graph:

<table>
<thead>
<tr>
<th>Light</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Notice this has the effect of spreading the red illumination across more of the inverted bowl-shaped surface.

More on Brightness

Use Brightness to change the intensity of the lighting for a 3D surface plot. Lower values result in darker surfaces, higher values result in lighter surfaces.

To change surface lights
1. Double-click the surface.
2. Choose one of the following:
 - Automatic to accept the default surface lighting.
 - Custom to customize the surface lighting.
3. Check On to turn on the light so that it illuminates the data surface. You can have up to three lights.
4. Under Relative Position, complete the table for each light:
 - In X, type a number for the x-coordinate.
 - In Y, type a number for the y-coordinate.
 - In Z, type a number for the z-coordinate.
 Type a larger number to move the light in the positive direction parallel to the axis. Type a smaller number to move the light parallel to the axis in the negative direction. You can use positive and negative numbers.
 - From Color, choose a color for the light.
5. In Brightness, type a value between 0 (darkest) and 100 (brightest) to control the brightness of all lights.
6. Click OK.
Customizing Graphs

Edit Surface – Options
Select surface > Editor > Edit Surface > Options

Use to customize the grid of regular x- and y-values (mesh) that Minitab uses to calculate the surface.

3 by 3 mesh 4 by 5 mesh

By default, if your data form a regular x-y mesh, Minitab uses this mesh and creates the plot based on the actual z-values. Otherwise, Minitab interpolates values for a regular 15 by 15 mesh. Alternatively, you can specify the number of x- and y-values to include:

- For higher resolution, use more values.
- For lower resolution, use fewer values.

Note Using a mesh with more and smaller intervals than exist between data points may appear to add more resolution to the image, but the added detail may not be meaningful.

Dialog box items
Mesh for Interpolating Surface
Automatic: Choose to accept the default mesh.
Custom: Choose to customize the mesh.

- X-Mesh Number: Enter the number of x-values to include in the mesh.
- Y-Mesh Number: Enter the number of y-values to include in the mesh.

Boundary z-value: Enter a z-value to be used at the boundaries (corners and edges) of the plot if your data do not form a regular mesh. By default, Minitab uses the minimum z-value. (If your data follow a regular mesh, this option is not available. This option is not available with response surface or mixtures plots.)

To change the mesh
1 Double-click the surface.
2 Click the Options tab.
3 Under Mesh for Interpolating Surface, choose one of the following:
 - Automatic to use the default mesh.
 - Custom to customize the mesh.
 - In X-Mesh Number, enter the number of x-values to include in the mesh.
 - In Y-Mesh Number, enter the number of y-values to include in the mesh.
4 In Boundary z-value, enter a z-value to be used at the boundaries (corners and edges) of the plot if your data do not form a regular mesh. By default, Minitab uses the minimum z-value. (If your data follow a regular mesh, this option is not available. This option is not available with response surface or mixtures plots.)
5 Click OK.

Examples of editing the surface
In Example of a 3D surface plot, you examine the optimal time and temperature for reheating a new frozen entree. You want to customize the plot.

To see the effect of changing the surface lighting, see Example of a 3D surface plot.
Customizing and Editing Graphs

Attributes
Change the surface type and colors.
1. Double-click the surface.
2. Under **Surface Type**, choose **Wireframe**.
3. Under **Surface Color**, choose **Custom**.
 - From **Surface color**, choose [].
 - From **Wire color**, choose [].
4. Click **OK**.

Options
Change the mesh.
1. Double-click the surface.
2. Click the **Options** tab.
3. Under **Mesh for Interpolating Surface**, choose **Custom**.
 - In **X-Mesh Number**, type 20.
 - In **Y-Mesh Number**, type 20.
4. Click **OK**.

Symbols

<table>
<thead>
<tr>
<th>Graph</th>
<th>Attributes</th>
<th>Groups</th>
<th>Jitter</th>
<th>Binning</th>
<th>Chart Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scatterplot</td>
<td>[]</td>
<td>[]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Plot</td>
<td>[]</td>
<td>[]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marginal Plot</td>
<td>[]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histogram</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability Plot</td>
<td>[]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boxplot</td>
<td>[]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval Plot</td>
<td>[]</td>
<td>[]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Value Plot</td>
<td>[]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bar Chart</td>
<td>[]</td>
<td></td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>Time Series Plot</td>
<td>[]</td>
<td>[]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contour Plot</td>
<td>[]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D Scatterplot</td>
<td>[]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D Surface Plot</td>
<td>[]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Edit Symbols – Attributes
Select symbols > Editor > Edit Symbols > Attributes
Use to customize symbol attributes.
Dialog box items

Symbols

Automatic: Choose to accept the default symbol attributes.
Custom: Choose to customize the symbol attributes.

Type: Choose a symbol type.
Color: Choose a symbol color.
Size: Choose a symbol size.

To change the symbol or dot attributes
1 Select then double-click one or more symbols or dots. See Selecting groups and single items.
2 Under Symbols, choose one of the following:
 • Automatic to accept the default symbol attributes.
 • Custom to customize the symbol attributes.
 – From Type, choose a symbol type.
 – From Color, choose a symbol color.
 – From Size, choose a symbol size.
3 Click OK.

Edit Symbols – Binning
Select symbols > Editor > Edit Symbols > Binning
Use to define bin intervals by midpoints or cutpoints.

Dialog box items

Interval Type

Midpoint: Choose to define bin intervals by midpoints.
Cutpoint: Choose to define bin intervals by cutpoints.

Interval Definition

Automatic: Choose to accept the default number of bins.
Number of intervals: Choose and enter the number of bins.
Midpoint/Cutpoint positions: Choose and enter custom midpoint or cutpoint positions.

To change the binning
1 Double-click the area, bars, dots, symbols, or lowess smoother.
2 Click the Binning tab.
3 Under Interval Type, choose Midpoint or Cutpoint to define bin intervals by midpoints or cutpoints.
4 Under Interval Definition, choose one of the following to determine the number of bins:
 • Automatic to accept the default number of bins.
 • Number of intervals, then enter the number of bins.
 • Midpoint/Cutpoint positions, then enter custom midpoint or cutpoint positions.
5 Click OK.

Edit Symbols – Groups
Select all symbols > Editor > Edit Symbols > Groups
Use to add, remove, or change the grouping variables on a scatterplot, matrix plot, histogram, probability plot, time series plot, and 3D graph.
You can also add a grouping variable to a boxplot, interval plot, individual value plot, or bar chart.

Dialog box items

Categorical variables for grouping: Enter up to three columns of categorical grouping variables to assign different attributes to each group and display a legend.
Apply same grouping to other data displays: Check to update all data displays, such as connect line and project lines, to use the same grouping variables as the symbols. (Not available with histograms or probability plots.)

To change the grouping variables
1 Select and double-click all areas, symbols, project lines, bars, or connect lines. See Selecting groups and single items.
2 Click the Groups tab.
3 In Categorical variables for grouping, enter up to four columns containing categorical grouping variables. Minitab assigns different attributes to each group and displays a legend.
4 If you like, check Apply same grouping to other data displays to assign the group attributes to all data displays on the graph. (Not available with histograms, probability plots, or empirical cdf graphs.)
5 Click OK.

Edit Symbols – Groups
Select all symbols > Editor > Edit Symbols > Groups
If you have grouping variables on a boxplot, interval plot, individual value plot, or bar chart, you can assign different attributes to each group.
You can also add a grouping variable to a scatterplot, matrix plot, histogram, probability plot, time series plot, and 3D graph.

Dialog box items
Categorical variables for attribute assignment: Enter up to four columns of categorical grouping variables to assign different attributes to each group and display a legend.
Apply attribute variables to other data displays: Check to update all data displays, such as bars and connect lines, to use the same attribute variables as the symbols.
<Chart Options

To assign attributes based on grouping variables
1 Select and double-click all boxes, bars, connect lines, dots, interval bars, or project lines. See Selecting groups and single items.
2 Click the Groups tab.
3 In Categorical variables for attribute assignments, enter up to four columns of categorical grouping variables for bar chart and three for other graphs. Minitab assigns different attributes to each group and may display a legend.
4 If you like, check Apply attribute variable to other data displays to assign the group attributes to all data displays on the graph. (Not available with dotplots.)
5 Click OK.

Edit Symbols – Jitter
Select all symbols > Editor > Edit Symbols > Jitter
Use to randomly offset (jitter) points to reveal overlapping points. You can jitter symbols on scatterplots, matrix plots, boxplots, interval plots, individual value plots, and 3D scatterplots.

Dialog box items
Add jitter to direction: Check to offset points so they do not overlap.
 X: Type a number from 0 to 1 to specify the amount of jitter in the x-direction.
 Y: Type a number from 0 to 1 to specify the amount of jitter in the y-direction.
 Z: (3D scatterplot only) Type a number from 0 to 1 to specify the amount of jitter in the z-direction.

To add jitter
1 Select and double-click all areas, connect lines, project lines, or symbols. See Selecting groups and single items.
2 Click the Jitter tab.
3 Check Add jitter to direction to offset points so they do not overlap. Then:
 • In X, type a number from 0 to 1 to specify the amount of jitter in the x-direction.
 • In Y, type a number from 0 to 1 to specify the amount of jitter in the y-direction.
• (3D scatterplot only) In Z, type a number from 0 to 1 to specify the amount of jitter in the z-direction.
4 Click OK.

Edit Symbols – Chart Options

Select symbols > Editor > Edit Symbols > Chart Options
Select bar chart > Editor > Graph Options

Use to specify increasing or decreasing bar order, choose a cumulative y-scale, or choose a percent scale for the y-axis. If you have more than one categorical variable, use to specify the grouping level for calculating the scale and to stack data.

Dialog box items

Order Main X Groups Based On Choose the order for the bars. See Ordering Category Groups Based on Y-Axis Values.

Default: Choose to use the default order for bars. For bar charts of counts of unique values and functions of a variable, the default order is ascending, either numerically, chronologically, or alphabetically. (To use a value order other than alphabetical for text categories, see Ordering text categories.) For bar charts of values from a table, the default order is always the order in which the categories appear in the worksheet; any value order is ignored.

Increasing Y: Choose to order bars from smallest to largest y-values.
Decreasing Y: Choose to order bars from largest to smallest y-values.

Note If the data have multiple categorical variables, Minitab orders the bars by the sum of chart values for the outermost cluster groups.

Show Y as Percent: Check to use a percent scale on the y-axis. See Using Percent Scales and Accumulating Y Across X.

Accumulate Y across X: Check to use a cumulative scale on the y-axis. See Using Percent Scales and Accumulating Y Across X.

Take Percent and/or Accumulate If you have two or more categorical variables, specify for which grouping level you want to show y as a percent and/or accumulate y across x. The options available depend on the number of categorical variables that are included in the bar chart. For more information, see Using Percent Scales and Accumulating Y Across X.

Across all categories: Choose to apply a percent scale and/or cumulative scale across all categories.

Within categories at level 1 (outermost): Choose to apply a percent scale and/or cumulative scale within categories at the outermost scale level only.

Within categories at level 2: Choose to apply a percent scale and/or cumulative scale within categories at the second grouping level from the bottom only.

Within categories at level 3: Choose to apply a percent scale and/or cumulative scale within categories at the third grouping level from the bottom only.

Stack values for last categorical variable: Check to stack the categories for the last categorical variable. Each category is represented by a separate segment of a bar. (Only available if you have two or more categorical variables.)

Examples of editing symbols (bar chart)

In the Example of a clustered bar chart of counts, you examine the number of rejected door panels for each type of paint flaw, clustered by time period. You want to add and customize the symbols.

Groups
Add a grouping variable.
1 Choose Editor > Add > Data Display.
2 Under Data Display, check Symbols.
3 Click OK.
4 Select and double-click all symbols.
5 Click the Groups tab.
6 In Categorical variables for attribute assignment, enter Period.
7 Click OK.
Attributes
Change the symbol color for one group.
1. Select and double-click the green symbols (Period = Night). See Selecting groups and single items for details.
2. Under Symbols, choose Custom.
 • From Color, choose [].
3. Click OK.

Chart options
Change the bar order and scale.
1. Select and double-click all symbols.
2. Click the Chart Options tab.
3. Under Order Main X Groups Based On, choose Increasing Y.
4. Check Accumulate Y across X.
5. Click OK.

Examples of editing symbols (boxplot)
In the Example of a boxplot with multiple y's and groups, you assess the consistency of plastic pipe diameters. You can represent the data with outlier, individual, median, and mean symbols. You want to add and customize individual symbols.

Note Similar symbol editing functions are available for individual symbols on interval plots and individual value plots.

Groups
Add a grouping variable.
1. Choose Editor > Add > Data Display.
2. Under Data Display, check Individual symbols.
3. Double-click the symbols.
4. Click the Groups tab.
5. In Categorical variables for grouping, enter Machine.
6. Click OK.
Attributes
Change the symbol type and color for each group.

1. Select and double-click the black symbols (Machine = 1). See Selecting groups and single items for details.
2. Under Symbols, choose Custom.
 - From Type, choose □.
 - From Color, choose □.
3. Click OK.
4. Select and double-click the red symbols (Machine = 2).
5. Under Symbols, choose Custom.
 - From Type, choose ○.
 - From Color, choose □.
6. Click OK.

Jitter
By default, Minitab randomly offsets (jitters) points to display overlapping points. Remove the jitter.

1. Double-click the symbols.
2. Click the Jitter tab.
3. Uncheck Add jitter to direction.
4. Click OK.

Examples of editing symbols (contour plot)
In the Example of a contour plot, you determine the optimal time and temperature for reheating a new frozen entree. You want to add and customize the symbols.

Note: Similar symbol editing functions are available for 3D surface plots.

Attributes
Change the area fill pattern and color, and change the border width.

1. Choose Editor > Add > Data Display.
2. Under Data Display, check Symbols. Click OK.
3. Select and double-click all symbols.
4. Under Symbols, choose Custom.
 - From Type, choose ◆.
 - From Color, choose □.
5. Click OK.

Examples of editing symbols (histogram)
In the Example of a simple histogram, you determine the amount of torque required to remove shampoo bottle caps. You want to add and customize the symbols.
Attributes
Change the area fill pattern and color, and change the border width.
1 Choose Editor > Add > Data Display.
2 Under Data Display, check Symbols.
3 Click OK.
4 Double-click the symbols.
5 Under Symbols, choose Custom.
 • From Type, choose ●.
 • From Color, choose ．
6 Click OK.

Binning
Change the interval type to cutpoint.
1 Double-click the symbols.
2 Click the Binning tab.
3 Under Interval Type, choose Cutpoint.
4 Click OK.

Groups
Add a grouping variable and reset the interval type to midpoint.
1 Double-click the symbols.
2 Under Symbols, choose Automatic.
3 Click the Groups tab.
4 In Categorical variables for grouping, enter Machine.
5 Click the Binning tab.
6 Under Interval Type, choose Midpoint.
7 Click OK.

Panel
To improve visibility, display each group in a separate panel.
1 Choose Editor > Panel.
2 In By variables with groups in separate panels, enter Machine.
3 Click OK.
Examples of editing symbols (marginal plot)

In the Example of a marginal plot with histograms, you examine the relationship between flash recovery time (minimum time between flashes) and the voltage remaining in the camera battery. You want to edit the symbols.

Attributes
Change the symbol type and color.
1. Double-click the symbols.
2. Under Symbols, choose Custom.
 • From Type, choose *.
 • From Color, choose #.
3. Click OK.

Examples of editing symbols (probability plot)

In the Example of a probability plot, you assess the flammability of a new fabric. You want to customize the symbols.

Attributes
Change the symbol type and color for the three points with VoltsAfter values greater than 1.4.
1. Select and double-click a symbol for a VoltsAfter value greater than 1.4.
2. Under Symbols, choose Custom.
 • From Type, choose □.
 • From Color, choose #.
3. Click OK.
4. Repeat for the other two points.

Examples of editing symbols (scatterplot)

In the Example of a simple scatterplot, you examine the relationship between voltage remaining in your batteries immediately after a flash and the length of time required for a battery to be ready to support another flash. You want to customize the symbols.

Note Similar symbol editing functions are available for matrix plots and 3D scatterplots.
Groups

Add a grouping variable.
1. Double-click the symbols.
2. Click the **Groups** tab.
3. In **Categorical variables for grouping**, enter *Formulation*.
4. Click **OK**.

Jitter

Add random offset (jitter) points to see overlapping points.
1. Double-click the symbols.
2. Click the **Jitter** tab.
3. Check **Add jitter to direction**.
4. Click **OK**.

Attributes

Change the symbol color for one group.
1. Select and double-click the red symbols (Formulation = Old). See Selecting groups and single items for details.
2. Under **Symbols**, choose **Custom**.
 - From **Color**, choose.
3. Click **OK**.

Examples of editing symbols (time series plot)

In the Example of a simple time series plot, you track a company's quarterly sales over three years. You want to customize the symbols.
Groups
Add a grouping variable.
1 Double-click the symbols.
2 Click the Groups tab.
3 In Categorical variables for grouping, enter Year.
4 Click OK.

Attributes
Change the symbol color and type for one group.
1 Select and double-click the green symbols (Year = 2002). See Selecting groups and single items for details.
2 Under Symbols, choose Custom.
 • From Color, choose [].
 • From Type, choose ▲.
3 Click OK.
Axes, Ticks, Reference Lines...

Scale Overview
Scale elements provide important points of reference for your data. Each scale consists of an axis line, an axis label, tick marks, and tick labels, although you may not display all these components. Available scale items vary depending on:

- The type of graph. Time series plots, probability plots, and others contain specialized scale items.
- Whether the graph scales are continuous or categorical.

After creating the graph, you can:
- Change the attributes of any of the scale items (see Scale Editing Overview).
- Add scale items (see Adding a Graph Element).

<table>
<thead>
<tr>
<th>Scale item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axes and Ticks</td>
<td>Specify the placement and display of axes and ticks.</td>
</tr>
<tr>
<td>Gridlines</td>
<td>Display major and minor gridlines for both horizontal and vertical axes.</td>
</tr>
<tr>
<td>Reference Lines</td>
<td>Display reference lines on both horizontal and vertical axes.</td>
</tr>
</tbody>
</table>
Percentile Lines

Display percentile lines on probability plots and Empirical CDF graphs.

Time Scale

Control time scales and start values with time series plots, area graphs, and control charts.

Secondary Scale

With graph editing, add a secondary scale to overlaid scatterplots and time series plots.

Creation

Axes and Ticks

Axes and Ticks Overview

Axes and ticks provide directional and incremental points of reference for your data.
Customizing and Editing Graphs

Scale item

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note

Minor ticks cannot be used with categorical scales, because there are no logical intervals between categories. See Continuous and Categorical Scales. Time, percent, and probability scales also do not allow minor ticks.

Axes and Ticks subdialog boxes all contain essentially the same elements, but differ in wording based on the graph type. Click the following links for graph-specific axes and ticks information:

- Graphs with categorical scales
- 3D Graphs
- Time Series and Area graphs
- Marginal Plots
- All other graphs
Scale – Axes and Ticks
... > Scale > Axes and Ticks
Use to specify which scale elements to display and where to display them.
By default, Minitab displays the axis line, major ticks, and associated tick labels for each scale on the low side of the graph and the axis line only for the scale on the high side of the graph. After you create a graph you can:

- Edit the range of the scale.
- Edit the tick labels.
- Edit the attributes, font, and alignment of the scale.
- Add hidden scale items with the Show tab.
- Apply a scale transformation.
- Add a secondary scale to overlaid scatterplots or time series plots.

Dialog box items
Axis line: Check to display axis lines on the low and high sides of the x- and y-scales.
Major ticks: Check to display major tick marks on the low and high sides of the x- and y-scales.
Major tick labels: Check to display major tick labels on the low and high sides of the x- and y-scales.
Minor ticks: Check to display minor tick marks on the low and high sides of the x- and y-scales.
Transpose Y and X: Check to transpose the variables that are plotted on each axis. Not available with all graphs.
Adjust x-scale for threshold if distribution has this parameter: If you have chosen a distribution with a threshold parameter, checking this item adjusts the x-scale accordingly. Only available with probability plots.

Scale – Axes and Ticks for Categorical Scales
... > Scale > Axes and Ticks
Use to specify which scale elements to display and where to display them on a categorical scale.
By default, Minitab displays the major ticks and associated tick labels for each scale on the low side of each axis. After you create a graph you can:

- Edit the spacing of categories and their labels.
- Edit the tick labels.
- Edit the attributes, font, and alignment of the scale.
- Add hidden scale items with the Show tab.

Dialog box items
Axis line: Check to display axis line on the low and high sides of the Value Scale (Y) and Category Scale (X).
Major ticks: Check to display major tick marks on the low and high sides of the Value Scale (Y) and Category Scale (X). Category scale option not available with all graphs.
Major tick labels: Check to display major tick labels on the low and high sides of the Value Scale (Y) and Category Scale (X). Category scale option not available with all graphs.
Minor ticks: Check to display minor ticks on the low and high sides of the Value Scale (Y).
Transpose value and category scales: Check to transpose the variables plotted on each axis. Not available with dotplot.

Scale – Axes and Ticks for Time Series and Area Graphs
... > Time/Scale > Axes and Ticks
Use to specify which scale elements to display and where to display them.
By default, Minitab displays the major ticks and associated tick labels for each scale on the low side of each axis. For more information on the scales of time series plots and area graphs, click Time Overview. After you create a graph you can:

- Edit the placement and increments of scale items.
- Edit the tick labels.
- Edit the attributes, font, and alignment of the scale.
- Add hidden scale items with the Show tab.
- Add a secondary scale to overlaid scatterplots or time series plots.
Dialog box items

Note
Available items may vary with control charts.

Axis line: Check to display axis lines on the low and high sides of the Value Scale (Y) and Time Scale (X).

Major ticks: Check to display major ticks on the low sides of the Value Scale (Y) and Time Scale (X).

Major tick labels: Check to display major tick labels on the low sides of the Value Scale (Y) and Time Scale (X).

Minor ticks: Check to display minor ticks on the low and high sides of the Value Scale (Y).

Scale – Axes and Ticks for 3D Graphs

... > Scale > Axes and Ticks

Use to specify which scale elements to display and where to display them.

By default, Minitab displays the major ticks and associated tick labels for each scale on the low side of each axis.

After you create a graph you can:

- Edit the range of the scale.
- Edit the tick labels.
- Edit the attributes, font, and alignment of the scale.
- Add hidden scale items with the Show tab.

Dialog box items

Major ticks: Check to display major ticks on the low sides of the x-, y-, and z-scales.

Major tick labels: Check to display major tick labels on the low sides of the x-, y-, and z-scales.

Minor ticks: Check to display minor ticks on the low sides of the x-, y-, and z-scales.

Scale – Axes and Ticks for Marginal Plot

... > Scale > Axes and Ticks

Use to specify which scale elements to display and where to display them.

By default, Minitab displays the major ticks and associated tick labels for each scale on the low side of each axis. After you create a graph you can:

- Edit the range of the scale.
- Edit the tick labels.
- Edit the attributes, font, and alignment of the scale.
- Add hidden scale items with the Show tab.

Dialog box items

Axis Line: Check to display axis lines on the low sides of the x- and y-scales.

Major ticks: Check to display major ticks on the low sides of the x- and y-scales.

Major tick labels: Check to display major tick labels on the low sides of the x- and y-scales.

Minor ticks: Check to display minor ticks on the low sides of the x- and y-scales.

To display scale elements

1. In the data source dialog box, click **Scale**.
2. Check the components you want to display.
3. Click **OK**.

Note
If you choose minor ticks, but not major ticks, Minitab displays minor ticks at the major tick positions.

Example of displaying the y-scale on the right axis

From the Scale subdialog box, you can specify which scale components to display on your graph. By default, major ticks and tick labels are shown only on the low sides of the graph. In this example, you add these items to the high sides of the graph.

1. Open the file BATTERIES.MTW.
2. Choose **Graph > Scatterplot**.
3 Choose **With Groups**, and click **OK**.
4 In **Y**, enter VoltsB. In **X**, enter Service.
5 In **Categorical variables for grouping (0-3)**, enter Drain.
6 Click **Scale**, then click the **Axes and Ticks** tab.
7 Under **Y Scale, High**, and **X Scale, High**, check **Major ticks** and **Major tick labels**. Click **OK** in each dialog box.

Graph window output

![Scatterplot of VoltsB vs Service](image)

Example of transposing axes of a probability plot

You want to know whether your pager voltage data follow the normal distribution, so you create a probability plot. You transpose the axes to display percents on the horizontal axis.

1 Open the worksheet BATTERIES.MTW.
2 Choose **Graph > Probability Plot > choose Single > OK**.
3 In **Variables**, enter VoltsC.
4 Click **Scale**, then click the **Axes and Ticks** tab.
5 Check **Transpose Y and X**, then click **OK** in each dialog box.

Graph window output

![Probability Plot of VoltsC](image)

Interpreting the results

Visually, your pager data appear to follow the normal distribution, because all the data fall along the plotted line within the confidence intervals.
Statistically, you can conclude that the normal distribution appears to fit your data, because the Anderson-Darling statistic (AD) is 0.2582 and the p-value (P) is 0.691.

Y-Scale Type

Scale > Y-Scale Type

Use to choose the y-scale type of a histogram, probability plot, or Empirical CDF. By default, Minitab displays a percent scale for probability plots and Empirical CDF graphs and a frequency scale for histograms.

Dialog box items

Y-Scale Type

- **Frequency**: Choose to use a frequency scale. This option is only available with histograms.
- **Percent**: Choose to use a percent scale.
- **Density**: Choose to use a density scale. This option is only available with histograms.
- **Probability**: Choose to use a probability scale. This option is not available with histograms.
- **Score**: Choose to use a scores scale. This option is only available with probability plots. (For calculations, see Method of obtaining probability plot points.)

Accumulate values across bins: For histograms only, check to accumulate values from left to right with each bar. This option cannot be used with the Density option.

To change y-scale type

1. In the data source dialog box, click **Scale**, then click the **Y-Scale Type** tab.
2. Under Y-Scale Type, do one of the following:
 - Choose **Frequency** to change the scale type to represent frequency.
 - Choose **Percent** to change the scale type to represent percentages.
 - Choose **Density** to change the scale type to represent density. Only with histograms.
 - Choose **Probability** to change the scale type to represent probability. Not available with histograms.
 - Choose **Score** to change the scale type to represent scores. Only with probability plots.
3. If you have chosen **Frequency** or **Percent**, check **Accumulate values across bins** to accumulate values from left to right with each bar. Only available with histograms.
4. Click **OK**.

Example of changing y-scale type

Suppose you are creating a probability plot and decide to alter the default display of the scale from percentages to probability.

1. Open the worksheet FABRIC.MTW.
2. Choose **Graph > Probability Plot**.
3. Choose **Single** and click **OK**.
5. Click **Scale**, then click the **Y-Scale Type** tab.
6. Under **Y-Scale Type**, choose **Probability**. Click **OK** in each dialog box.
Gridlines
Scale – Gridlines
... > Scale > Gridlines
Use to display gridlines at the major and minor tick positions. If you choose gridlines at the minor tick positions, gridlines are also drawn at the major tick positions. After you create a graph you can:
- Edit the display of gridlines.
- Edit the attributes of gridlines.
- Add gridlines with Editor > Add > Gridlines.

Dialog box items

Z major ticks: Check to display gridlines at the z-axis major tick position. This option is only available with 3D plots.

Z minor ticks: Check to display gridlines at the z-axis minor tick position. This option is only available with 3D plots.

Y major ticks: Check to display gridlines at the y-axis major tick position.

Y minor ticks: Check to display gridlines at the y-axis minor tick position. Y minor ticks are not available with probability or percent scales of probability plots.

X major ticks: Check to display gridlines at the x-axis major tick position.

X minor ticks: Check to display gridlines at the x-axis minor tick position. X minor ticks are not available with all graphs.

To display gridlines
1. In the Graph dialog box, click Scale and then click the Gridlines tab.
2. In the check boxes, check the tick positions of each axis for which you want to display gridlines.

Note
- If you choose gridlines to be displayed at the minor tick positions, but not at the major tick positions, Minitab displays gridlines at both major and minor tick positions.
3. Click OK.

Example of displaying gridlines
Suppose you want to include a scatterplot in a presentation. To ensure that points are easily related to their respective values on both scales, you add gridlines.
1. Open the worksheet PULSE.MTW.
2. Choose Graph > Scatterplot.
3. Choose Simple and click OK.
5. In X, enter Weight.
Customizing and Editing Graphs

6. Click Scale, then click the Gridlines tab.
7. Under Show gridlines for, check all items except Y minor ticks.
8. Click OK in each dialog box.

Graph window output

Reference Lines
Scale – Reference Lines
... > Scale > Reference Lines
Use to display reference lines. By default, Minitab displays labels for each reference line. After you create a graph you can:
- Edit the attributes of reference lines.
- Edit the display of reference line labels.
- Edit the font of reference line labels.
- Edit the alignment of reference line labels.
- Add reference lines with Editor > Add > Reference Lines.

Dialog box items
Show reference lines for Z positions: Enter the position for z-scale reference lines to be drawn. Only available with 3D graphs.
Show reference lines for Y positions: Enter the position for y-scale reference lines to be drawn.
Show reference lines for X positions: Enter the position for x-scale reference lines to be drawn.

To display reference lines
1. In the data source dialog box, click Scale, then click the Reference Lines tab.
2. In Show reference lines for Y positions, enter the y values at which you want reference lines drawn. Separate multiple entries with a space.
3. In Show reference lines for X positions, enter the x values at which you want reference lines drawn. Separate multiple entries with a space.
4. Click OK.

Scale – Reference Lines for Categorical Scales
... > Scale > Reference Lines
Use to display reference lines when you create a graph with a scale displaying categorical data. By default, Minitab displays labels for each reference line. After you create a graph you can:
- Edit the attributes of reference lines.
• Edit the display of reference line labels.
• Edit the font of reference line labels.
• Edit the alignment of reference line labels.
• Add reference lines with Editor > Add > Reference Lines.

Dialog box items
Show reference lines at Y (value scale) positions: Enter the positions for value-scale reference lines.
Show reference lines at X (category scale) positions: Enter the positions for category-scale reference lines. Each category is assigned an integer value. From left to right, the first category is 1, the second 2, and so on. Entering a value of 1.5 draws a reference line between the first and second categories.

To display reference lines with categorical scales
1. In the Graph dialog box, click Scale, then click the Reference Lines tab.
2. In Show reference lines at value scale positions, enter the values at which you want value scale reference lines drawn.
3. In Show reference lines at category scale positions, enter the values at which you want category scale reference lines drawn. Each category is assigned an integer value. From left to right, the first category is 1, the second 2, and so on. Entering a value of 1.5 draws a reference line between the first and second categories.
4. If you like, use any dialog box options, then click OK.

Scale – Reference lines for histograms, probability plots and empirical CDF
... > Scale > Reference Lines
Use to display reference lines. By default, Minitab displays labels for each reference line. After you create a graph you can:
• Edit the attributes of reference lines.
• Edit the display of reference line labels.
• Edit the font of reference line labels.
• Edit the alignment of reference line labels.
• Add reference lines with Editor > Add > Reference Lines.

Dialog box items
Show reference lines for Y positions: Enter the positions for y-scale reference lines.
Show reference lines at X (data scale) positions: Enter the positions for x-scale reference lines.

To display reference lines with probability plots and histograms
1. In the Graph dialog box, click Scale, then click the Reference Lines tab.
2. In Show reference lines for Y positions, enter the y values at which you want reference lines drawn.
3. In Show reference lines for X (data) scale positions, enter the x values at which you want reference lines drawn.
4. If you like, use any dialog box options, then click OK.

Example of a simple scatterplot
You are interested in how well your company's camera batteries are meeting customers' needs. Market research shows that customers become annoyed if they have to wait longer than 5.25 seconds between flashes.
You collect a sample of batteries that have been in use for varying amounts of time and measure the voltage remaining in each battery immediately after a flash (VoltsAfter), as well as the length of time required for the battery to be able to flash again (flash recovery time, FlashRecov). Create a scatterplot to examine the results. Include a reference line at the critical flash recovery time of 5.25 seconds.
1. Open the worksheet BATTERIES.MTW.
2. Choose Graph > Scatterplot.
3. Choose Simple, then click OK.
5. Click Scale, then click the Reference Lines tab.
6. In Show references lines for Y positions, type 5.25. Click OK in each dialog box.
Interpreting the results
As expected, the lower the voltage in a battery after a flash, the longer the flash recovery time tends to be. The reference line helps to illustrate that there were many flash recovery times greater than 5.25 seconds.

Percentile Lines
Creation
Scale – Percentile Lines
... > Scale > Percentile Lines
Use to display percentile lines. By default, Minitab displays labels for each percentile line. After you create a graph you can:
- Edit the attributes of percentile lines.
- Edit the font of percentile line labels.
- Edit the alignment of percentile line labels.
- Add a percentile line with Editor > Add > Percentile Line.

Dialog box items
Percentile Lines
- None: Choose to display no percentile line.
- At Y values: Choose to enter y-scale values for placing percentile lines.
- At data values: Choose to enter data values for placing percentile lines.

To display percentile lines
1 In the Graph dialog box, click Scale, then click the Percentile Lines tab.
2 Under Percentile Lines, choose At Y values or At data values and enter the percentiles or data values where you want lines drawn. When entering multiple percentiles, leave a space between each entry.
3 Click OK.

Example of a probability plot
You work for a textile manufacturer and want to assess the flammability of a new fabric. Testers hold randomly selected pieces of the fabric over an open flame for a fixed amount of time, and measure the length of the burned portion. You typically use the 87th percentile as a benchmark for such tests. Create a probability plot to determine if a normal distribution fits your data and to estimate the 87th percentile for the population.
1 Open the worksheet FLAMERTD.MTW.
2 Choose Graph > Probability Plot.
3 Choose Single, then click OK.
4 In **Graph variables**, enter Fabric.
5 Click **Scale**, then click the **Percentile Lines** tab.
6 Under **Percentile Lines**, choose **At Y values**, and enter 87. Click **OK** in each dialog box.

Graph window output

![Probability Plot of Fabric](image)

Interpreting the results

A normal distribution with a mean of 3.573 and a standard deviation of 0.57 appears to fit your sample data fairly well:

- The plotted points form a reasonably straight line.
- The plotted points follow the fitted line fairly closely.
- The p-value for the Anderson-Darling test is above 0.10.

Because the distribution fits your data, you can use the fitted line to estimate percentiles for the population. The estimated 87th percentile for burn length is 4.215.

If you hover your mouse over the fitted line or confidence intervals, Minitab displays the fitted percentiles and associated confidence bounds for several points:

<table>
<thead>
<tr>
<th>Percent</th>
<th>Fabric</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.24721</td>
<td>1.68149</td>
<td>2.81293</td>
</tr>
<tr>
<td>2</td>
<td>2.40260</td>
<td>1.88512</td>
<td>2.92009</td>
</tr>
<tr>
<td>3</td>
<td>2.50119</td>
<td>2.01333</td>
<td>2.98906</td>
</tr>
<tr>
<td>4</td>
<td>2.57536</td>
<td>2.10917</td>
<td>3.04155</td>
</tr>
<tr>
<td>5</td>
<td>2.63569</td>
<td>2.18668</td>
<td>3.08470</td>
</tr>
<tr>
<td>6</td>
<td>2.68704</td>
<td>2.25230</td>
<td>3.12178</td>
</tr>
<tr>
<td>7</td>
<td>2.73206</td>
<td>2.30954</td>
<td>3.15459</td>
</tr>
<tr>
<td>8</td>
<td>2.77230</td>
<td>2.36054</td>
<td>3.18421</td>
</tr>
<tr>
<td>9</td>
<td>2.80904</td>
<td>2.40670</td>
<td>3.21139</td>
</tr>
<tr>
<td>10</td>
<td>2.84279</td>
<td>2.44898</td>
<td>3.23660</td>
</tr>
<tr>
<td>20</td>
<td>3.00357</td>
<td>2.75561</td>
<td>3.41353</td>
</tr>
<tr>
<td>30</td>
<td>3.27440</td>
<td>2.96577</td>
<td>3.58303</td>
</tr>
<tr>
<td>40</td>
<td>3.42891</td>
<td>3.13561</td>
<td>3.72222</td>
</tr>
<tr>
<td>50</td>
<td>3.57333</td>
<td>3.28466</td>
<td>3.86181</td>
</tr>
<tr>
<td>60</td>
<td>3.71775</td>
<td>3.42445</td>
<td>4.01106</td>
</tr>
<tr>
<td>70</td>
<td>3.87227</td>
<td>3.56364</td>
<td>4.18090</td>
</tr>
<tr>
<td>80</td>
<td>4.03510</td>
<td>3.71514</td>
<td>4.39105</td>
</tr>
<tr>
<td>87</td>
<td>4.21543</td>
<td>3.84295</td>
<td>4.58790</td>
</tr>
<tr>
<td>90</td>
<td>4.30388</td>
<td>3.91006</td>
<td>4.69769</td>
</tr>
<tr>
<td>95</td>
<td>4.37363</td>
<td>3.93328</td>
<td>4.73997</td>
</tr>
<tr>
<td>99</td>
<td>4.41140</td>
<td>3.99208</td>
<td>4.83712</td>
</tr>
<tr>
<td>99.5</td>
<td>4.41963</td>
<td>4.02489</td>
<td>4.89437</td>
</tr>
<tr>
<td>99.9</td>
<td>4.51098</td>
<td>4.06196</td>
<td>4.95999</td>
</tr>
<tr>
<td>99.95</td>
<td>4.57130</td>
<td>4.10511</td>
<td>5.03750</td>
</tr>
<tr>
<td>99.99</td>
<td>4.64547</td>
<td>4.15761</td>
<td>5.13334</td>
</tr>
<tr>
<td>100.0</td>
<td>4.74406</td>
<td>4.22658</td>
<td>5.26155</td>
</tr>
<tr>
<td>100.00</td>
<td>4.89946</td>
<td>4.33374</td>
<td>5.46518</td>
</tr>
</tbody>
</table>

You can be 95% confident that the 87th percentile for the population is between 3.84295 and 4.58790.
Customizing and Editing Graphs

Note Minitab calculates point-wise confidence intervals, thus the 95% confidence level applies only to individual intervals. If you use two or more intervals to estimate parameters, your actual confidence level for the group of estimates will be less than 95.

Time Scale

Time Overview
Time series plots and area graphs use a time series scale for the x-axis. Time units are specified in the Time tab of the Time/Scale subdialog box. The time series scale can be:

- Index values (integers representing generic time units)
- Time units
 - Calendar units (days, months, quarters, or years)
 - Clock units (days, hours, minutes, or seconds)
- Stamp values from a column

You can customize time units, start times, and increment times for index, calendar, and clock scales. See the chart below for ranges and default start values. The default increments are 1 unit.

<table>
<thead>
<tr>
<th>Time scale</th>
<th>Time unit</th>
<th>Valid values</th>
<th>Default start value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Generic</td>
<td>All integers</td>
<td>1</td>
</tr>
<tr>
<td>Calendar</td>
<td>Day</td>
<td>1 to 31 (depending on the month)</td>
<td>Current day</td>
</tr>
<tr>
<td></td>
<td>Month</td>
<td>1 to 12</td>
<td>Current month</td>
</tr>
<tr>
<td></td>
<td>Quarter</td>
<td>1 to 4</td>
<td>Current quarter</td>
</tr>
<tr>
<td></td>
<td>Year</td>
<td>Valid 4-digit years</td>
<td>Current year</td>
</tr>
<tr>
<td>Clock</td>
<td>Second</td>
<td>0 to 59</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Minute</td>
<td>0 to 59</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hour</td>
<td>0 to 23</td>
<td>0</td>
</tr>
</tbody>
</table>

Example of x-axis with a stamp column
Example of x-axis with two calendar units – month and year

Time/Scale – Time – Time Series Plot

Time Series Plot > Time/Scale > Time

Use to specify a time scale for the x-axis. After you create a graph you can:

- Edit the time units of the scale.
- Edit the tick positions and range of the scale.
- Edit the tick labels.
- Edit the attributes, font, alignment, and display of the scale.

Dialog box items

Time Scale

- **Index:** Choose to label the x-axis with integers.
- **Calendar:** Choose to label the x-axis with a calendar scale, then choose the calendar units.
- **Clock:** Choose to label the x-axis with a clock scale, then choose the clock units.
- **Stamp:** Choose to label the x-axis with values from one or more stamp columns.

 Stamp columns (1-3): Enter up to three columns containing stamp values.

Start Values *(not available with all graphs)*

- **One set for all variables:** Choose to use the same start values for each variable. Type the integer start values.
- **One set for each variable:** Choose to use a different set of start values for each variable. For each variable, type the integer start values.

Increment: Type the interval between successive worksheet observations on the innermost time scale.

Time/Scale – Time – Area Graph

Area Graph > Time/Scale > Time

Use to specify a time scale for the x-axis. After you create a graph you can:

- Edit the tick positions and range of the scale.
- Edit the tick labels.
- Edit the attributes, font, alignment, and display of the scale.

Dialog box items

Time Scale

- **Index:** Choose to label the x-axis with integers.
- **Calendar:** Choose to label the x-axis with a calendar scale, then choose the calendar units.
- **Clock:** Choose to label the x-axis with a clock scale, then choose the clock units.
Customizing and Editing Graphs

Stamp: Choose to label the x-axis with values from one or more stamp columns.

Stamp columns (1-3): Enter up to three columns containing stamp values.

Start Values: Type the integer start values for the time scale.

Increment: Type the interval between successive worksheet observations on the innermost time scale.

To customize the time scale
1. In the graph dialog box, choose Time/Scale.
2. Click the Time tab.
3. Under Time Scale, choose one of the following:
 - Index to label the x-axis with integers.
 - Calendar to label the x-axis with a calendar scale.
 - Choose the calendar units.
 - Clock to label the x-axis with a clock scale.
 - Choose the clock units.
 - Stamp to label the x-axis with values from one or more stamp columns.
 - In Stamp columns (1-3), enter up to three columns containing scale values.
4. Under Start Values, choose one of the following:
 - One set for all variables to use the same start values for each variable.
 - Type the start value for each component of the time scale.
 - One set for each variable to use a different set of start values for each variable, if there are overlaid variables.
 - For each variable, type the start values for each component of the time scale.
5. In Increment, type a value to increment the innermost time scale.
6. Click OK.

Example of using a stamp for the x-axis
You need to plot your sales using the date format qQyy for the time scale; for example, 4Q00 stands for the fourth quarter of 2000. You enter a column in Minitab called Date and use this column for a stamp on the time series plot.

Note You can also use a stamp with area graphs or control charts.
1. Open the worksheet NEWMARKET.MTW.
2. Choose Graph > Time Series Plot.
3. Choose Simple, then click OK.
4. In Series, enter SalesB.
5. Click Time/Scale.
6. Under Time Scale, choose Stamp.
7. In Stamp columns (1-3), enter Date. Click OK in each dialog box.
Example of using custom start times

Suppose you want to see how the depth of a reservoir fluctuates over time. You collect measurements every other month for 16 months, starting in January of 1999. Create a time series plot with custom start times.

Note
You can also use custom start times with area graphs.

1. Open the worksheet EXH_GRPH.MTW.
2. Choose **Graph > Time Series Plot**.
3. Choose **Simple**, then click **OK**.
4. In **Series**, enter **Depth**.
5. Click **Time/Scale**.
6. Under **Time Scale**, choose **Calendar**, then choose **Month Year**.
7. Under **Start Values**, choose **One set for all variables**.
8. Under **Month**, type 1. Under **Year**, type **1999**.
9. In **Increment**, type 2. Click **OK** in each dialog box.
Interpreting the results
The time series plot shows data points for every other month, starting with January 1999.

Scale – Time, with control charts
... > Scale > Time
Use to specify a time scale for the x-axis. After you create a graph you can:
• Edit the time units of the scale.
• Edit the range of the scale.
• Edit the tick labels.
• Edit the attributes, font, alignment, and display of the scale.

Dialog box items

Time Scale
 Index: Choose to label the x-axis with integers.
 Stamp: Choose to label the x-axis with values from one or more stamp columns.
 Stamp columns (1-3): Enter up to three columns containing date/time, numeric, or text scale values.

To customize a control chart's time scale
1 In the control chart dialog box, click Scale.
2 Choose the Time tab.
3 Under X Scale, choose the time scale for the x-axis.
 If you choose Stamp, in Stamp columns (1-3), enter one or more columns that contain the stamp information.
4 Click OK.

Editing

Scale Editing Overview
After you create a graph, you can add or customize scale elements. Refer to the table below for the appropriate procedure.

<table>
<thead>
<tr>
<th>Scale Item</th>
<th>To change...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axes and Ticks</td>
<td>• Range of the scale, number of major and minor ticks, and placement of ticks, see</td>
</tr>
<tr>
<td></td>
<td>– Edit Scale - Scale</td>
</tr>
<tr>
<td></td>
<td>– Edit Time Series and Area Graph Scale - Scale</td>
</tr>
<tr>
<td></td>
<td>– Edit Categorical Scale - Scale</td>
</tr>
<tr>
<td></td>
<td>• Display of axis lines, ticks, and tick labels, see</td>
</tr>
<tr>
<td></td>
<td>– Edit Scale - Show</td>
</tr>
<tr>
<td></td>
<td>– Edit Categorical Scale - Show</td>
</tr>
<tr>
<td></td>
<td>• Time series variables, see</td>
</tr>
<tr>
<td></td>
<td>– Edit Area Graph Scale - Time</td>
</tr>
<tr>
<td></td>
<td>– Edit Time Series Plot - Time</td>
</tr>
<tr>
<td></td>
<td>• Type, color, and size of axis lines, tick orientation, and tick length, see</td>
</tr>
<tr>
<td></td>
<td>– Edit Scale - Attributes</td>
</tr>
<tr>
<td></td>
<td>• Text of tick labels, see</td>
</tr>
<tr>
<td></td>
<td>– Edit Scale - Labels</td>
</tr>
<tr>
<td></td>
<td>– Edit Categorical Scale - Labels, Single Level</td>
</tr>
<tr>
<td></td>
<td>– Edit Categorical Scale - Labels, Multiple Levels</td>
</tr>
<tr>
<td></td>
<td>• Font, style, size, and color of tick labels, see</td>
</tr>
<tr>
<td></td>
<td>– Edit Scale - Font</td>
</tr>
</tbody>
</table>
Customizing Graphs

- Angle of tick labels, see
 - Edit Scale - Alignment
- Y-scale type on a histogram, probability plot, or Empirical CDF graph, see
 - Edit Scale - Type
- Y-scale type on a dendrogram, see
 - Edit Dendrogram Scale
- Transformation of the scale, see
 - Edit Scale - Transform
- Binning intervals, see
 - Edit Scale - Binning
- A primary scale into a secondary scale, see
 - Edit Scale - Secondary Scale

Axis Labels
- Font, style, size, and color of axis labels, see
 - Edit Axis Labels - Font
- Alignment of axis labels, see
 - Edit Axis Labels - Alignment
- Display of axis labels, see
 - Edit Axis Labels - Show
- Text of matrix plot axis labels, see
 - Edit Axis Labels - Text

Gridlines
- Type, color, and size of gridlines, see
 - Edit Gridlines - Attributes
- Display of gridlines, see
 - Edit Gridlines - Show

Reference Lines
- Type, color, and size of reference lines, see
 - Edit Reference Lines - Attributes
- Display and location of reference line labels, see
 - Edit Reference Line Labels - Show
- Font, style, size, color, and text of reference line labels, see
 - Edit Reference Line Labels - Font
- Angle of reference line labels, see
 - Edit Reference Line Labels - Alignment

Percentile Lines
- Type, color, and size of percentile lines, see
 - Edit Percentile Lines - Attributes
- Font, style, size, color, and text of percentile line labels, see
 - Edit Percentile Line Labels - Font
- Angle of percentile line labels, see
 - Edit Percentile Line Labels - Alignment

Axes and Ticks

Edit Scale – Scale

Select scale > Editor > Edit Scale > Scale

Use to specify the range of the scale, the number of major and minor ticks, and their placement.

Dialog box items

- **Major Tick Positions**
 - **Automatic:** Choose to display default number and position of major ticks on the selected scale.
 - **Number of ticks:** Choose to enter the number of major ticks displayed on the selected scale.
Customizing and Editing Graphs

Position of ticks: Choose to enter the position of major ticks on the selected scale.

Scale Range
- **Minimum:** Uncheck to enter a minimum value for the selected scale.
- **Maximum:** Uncheck to enter a maximum value for the selected scale.

Minor Ticks
- **Number:** Uncheck to enter the number of minor ticks displayed on the selected scale.

Same scale range for Y and X: Check to apply the same range to both scales. Only available with scatterplot.

Same scale range for all panels: Check to apply the same range to all scales. Only available with matrix plot and when paneling with multiple variables.

Same bins and scale range for all panels: Check to apply the same bins and range to all scales. Not available with all graphs.

Transpose Y and X: Check to transpose the y- and x-scales. Not available with all graphs.

Adjust x-scale for threshold if distribution has this parameter: If you have chosen a distribution with a threshold parameter, checking this item adjusts the x-scale accordingly. Only available with probability plots.

To edit scale range
1. Double-click the scale.
2. Click the Scale tab.
3. Under **Major Tick Positions**, do one of the following:
 - Choose **Automatic** to accept the default number and placement of major ticks on the scale.
 - Choose **Number of ticks** and enter the number of major ticks on the scale.
 - Choose **Position of ticks** and enter location of each major tick on the chosen scale.
4. Under **Scale Range**, check **Auto** for both **Minimum** and **Maximum** to accept the default scale range, or do one or both of the following:
 - Uncheck **Auto** for **Minimum** to enter a custom minimum scale range.
 - Uncheck **Auto** for **Maximum** to enter a custom maximum scale range.
5. Under **Minor Ticks**, do one of the following:
 - Check **Auto** to accept the default number of minor ticks on the scale.
 - Uncheck **Auto** and, in **Number**, enter the number of minor ticks you want between each major tick.
6. To apply the scale range changes to both Y and X scales, check **Same min and max for Y and X**.
7. Click **OK**.

Example of editing scale range and labels

In Example of displaying gridlines you created a simple scatterplot. You can edit this graph's range and labels.

Scale
1. Double-click the y-scale.
2. Under **Major Tick Positions**, choose **Position of ticks** and enter 50 60 100 110.
3. Under **Scale Range**, do the following:
 - Uncheck **Auto** for **Minimum** and enter 40.
 - Uncheck **Auto** for **Maximum** and enter 120.
4. Click **OK**.
Labels
1. Double-click the y-scale.
2. Click the Labels tab.
3. Under Major Tick Labels, choose Specified. Then enter 50 Normal 60 Normal 100 Normal 110.
4. Click OK.

Edit Scale — Show
Select scale > Editor > Edit Scale > Show
Use to show or hide axis lines, ticks, and labels. When editing marginal plots, 3D graphs, or secondary scales, there is no high or low side and a single check box is displayed.

Dialog box items
Axis line: Check to show axis lines on the low and high sides of the selected scale. Not available with 3D graphs.
Major ticks: Check to show major ticks on the low and high sides of the selected scale.
Major tick labels: Check to show major tick labels on the low and high sides of the selected scale.
Minor ticks: Check to show minor ticks on the low and high sides of the selected scale.

To edit scale display
1. Double-click the scale.
2. Click the Show tab.
3. Under Show, check or uncheck each item to show or hide the item on the Low or High side of the scale.
4. Click OK.

Edit Scale — Binning
Select scale > Editor > Edit Scale > Binning

Dialog box items
Interval Type
Midpoint: Choose to define bin intervals by midpoints.
Cutpoint: Choose to define bin intervals by cutpoints.

Interval Definition
Automatic: Choose to accept the default number of bins.
Number of intervals: Choose and enter the number of bins.
Midpoint/Cutpoint positions: Choose and enter custom midpoint or cutpoint positions.

To edit scale binning
1. Double-click the scale.
2. Click the Binning tab.
3. Under Interval Type, choose Midpoint or CutPoint to define bin intervals by midpoint or cutpoint.
4. Under Interval Definition, do one of the following:
 - Choose Automatic to accept default number of bins.
 - Choose Number of intervals, then enter the number of bins.
 - Choose Midpoint/Cutpoint positions, then enter custom midpoint or cutpoint positions.
5. Click OK.
Example of editing histogram scale binning

The Example of a simple histogram uses default binning. You want to reduce the width of these intervals for a more detailed view of the distribution.

1. Double-click the x-scale.
2. Click Binning.
3. Under Interval Definition, choose Number of intervals and enter 37.
4. Click OK.

Graph window output

Edit Scale – Transform

Select scale > Editor > Edit Scale > Transform

Affect a logarithmic or power transformation on a scale. Only available with scatterplot, time series plot, and area graph.

Dialog box items

Transformation

- None: Choose to remove an applied scale transformation.
- Logarithm: Choose to perform a logarithmic transformation of the selected scale.
 - Base
 - 10: Choose to use base 10.
 - e: Choose to use base e
 - 2: Choose to use base 2
 - Other: Choose to enter a different value, then enter a number from 2 through 10
- Power: Choose to perform a power transformation of the selected scale.
 - Enter a value between -5 and 5: Enter a power transformation value.

Note

After performing a scale power transformation, you must use the new units when editing that scale’s min and max, tick and reference line positions, or annotation in data units. With a log transformation, use the original units. If the data contain nonpositive values, you cannot choose log transformation or power transformations with base values that are not positive integers.

To edit scale transformations

1. Double-click the scale.
2. Click the Transform tab.
3. Under Transform, do one of the following:
 - Choose None to remove an applied scale transformation.
Copyright © 2003–2005 Minitab Inc. All rights reserved.

• Choose Logarithm to apply a logarithmic transformation. Then under Base, enter a value from 2 through 10 or e for the natural log.

• Choose Power to change the power of the scale, then enter a value from -5 through 5.

Note After performing a scale power transformation you must use the new units when editing that scale's min and max, tick and reference line positions, or annotation in data units. With a log transformation, use the original units. If your data contains nonpositive values you can’t choose log transformations or power transformations with base values that are not positive integers.

4 Click OK.

Example of editing scale transformations

You are a vintner concerned about the cost of lab work done to measure sugar content in your grapes. A field test that can be done quickly at a lower cost seems promising. You hope a regression analysis will provide an equation to predict the precise reading, so you plot the readings against one another, using a scale transformation on the response variable to find an appropriate model.

Step 1: Create the graph

1 Open the worksheet SUGAR.MTW
2 Choose Graph > Scatterplot > choose With Regression > OK.
3 In Y, enter Field. In X, enter Lab. Click OK.

Graph window output

Step 2: Edit the transformation

1 Double-click the x-scale.
2 Click the Transform tab.
3 Under Transformation, choose Logarithm.
4 Under Base, choose 10. Click OK.

Copyright © 2003–2005 Minitab Inc. All rights reserved. 115
Interpreting the results

In the initial graph, it is clear that a regression fit is not appropriate with the original data. This pattern indicates that a transformation might be useful. A regression plot utilizing a log transformation of the response variable and a linear regression model would be most appropriate to find an equation for predicting lab results from in-field refractometer readings.

Edit Histogram Scale – Type

Select y-scale > Editor > Edit Scale > Type

Use to choose the y-scale type of a histogram. By default, Minitab displays a frequency scale for histogram.

Dialog box items

Scale Type

- **Frequency**: Choose to use a frequency scale.
- **Percent**: Choose to use a percent scale.
- **Density**: Choose to use a density scale.

Accumulate values across bins: Check to accumulate values from left to right with each bar. This option cannot be used with the Density option.

To edit histogram scale type

1. Double-click the scale.
2. Click the **Type** tab.
3. Under **Scale Type**, do one of the following:
 - Choose **Frequency** to change the scale type to represent frequency.
 - Choose **Percent** to change the scale type to represent percentages.
 - Choose **Density** to change the scale type to represent density.
4. If you have chosen **Frequency** or **Percent**, check **Accumulate values across bins** to accumulate values from left to right with each bar.
5. Click **OK**.

Edit Probability Plot and Empirical CDF Graph Scale – Type

Select y-scale > Editor > Edit > Type

Use to choose the y-scale type of a probability plot or an Empirical CDF graph. By default, Minitab displays a percent-scale for these types of graphs.
Customizing Graphs

Dialog box items

Scale Type

- **Percent**: Choose to use a percent scale.
- **Probability**: Choose to use a probability scale.
- **Score**: Choose to use a scores scale. This option is only available with probability plots. (For calculations, see Method of obtaining probability plot points.)

To edit probability plot and Empirical CDF graph scale type

1. Double-click the scale.
2. Click the **Type** tab.
3. Under **Scale Type**, do one of the following:
 - Choose **Frequency** to change the scale type to represent frequency.
 - Choose **Percent** to change the scale type to represent percentages.
 - Choose **Probability** to change the scale type to represent probability.
 - Choose **Score** to change the scale type to represent scores. Only with probability plots.
4. Click **OK**.

Example of editing scale type

In Example of a probability plot, you created a graph with the default y-scale type, percent. You want to change the scale type to probability.

Note Similar scale-type editing functions are available for histograms, Empirical CDF graphs, and dendrograms.

1. Double-click the Percent scale.
2. Click **Type**.
3. Choose **Probability**. Click **OK**.

Graph window output

![Probability Plot of Fabric](image)

Edit Scale – Attributes

Select scale > Editor > Edit Scale > Attributes

Use to change the type, color, and size of the axis line, as well as the tick orientation and length.

Dialog box items

Lines

- **Automatic**: Choose to accept the default line attributes.
- **Custom**: Choose to change the line attributes.
- **Type**: Choose a line type.
Customizing and Editing Graphs

Color: Choose a line color.

Size: Choose a line thickness.

Tick Orientation Not available with 3D graphs.

Outside: Choose to display tick lines outside the axis line.

Inside: Choose to display tick lines inside the axis line.

Out and In: Choose to display tick lines crossing the axis line.

Length of Major Ticks: Enter a value from 0 to 0.05 to change the tick length. Not available with 3D graphs.

Apply same attributes to all scales: Check to change attributes for both y- and x-axes.

To edit line and scale attributes

1. Double-click the scale or gridline.
2. Click the **Attributes** tab.
3. Under **Lines**, choose one of the following (When editing gridlines, these items will appear under **Major Gridlines** and **Minor Gridlines**.):
 - **Automatic** to accept the default line type and color
 - **Custom** to pick your own line type and color
 - In **Type**, choose a line type.
 - In **Color**, choose a color.
 - In **Size**, choose a line thickness.
4. If you are editing scale attributes, under **Tick Orientation**, choose **Outside**, **Inside**, or **Out and In**.
5. In **Length of major ticks**, enter a value between 0 and 0.05.
6. Check **Apply same attributes to all scales** to apply your attribute changes to both the x- and y-axes.
7. Click **OK**.

Edit Scale – Labels

Select scale > Editor > Edit Scale > Labels

Use to change tick and axis labels in a continuous scale.

Dialog box items

Major Tick Labels

- **Automatic:** Choose to accept automatic tick labels.
- **Specified:** Choose to enter custom tick labels.

To edit scale labels

1. Double-click the scale.
2. Click the **Labels** tab.
3. Under **Major Tick Labels**, choose **Specified** and enter new tick labels. Click **OK**.

Note Labels that contain more than one word should be enclosed in quotation marks.

Edit Scale – Font

Select scale > Editor > Edit Scale > Font

Use to change the tick label font or attributes.

Dialog box items

Font: Choose a font.

Style

- **Bold:** Check to make the text bold.
- **Italic:** Check to italicize the text.
- **Underline:** Check to underline the text.

Size: Enter a font size.

Color: Choose a text color.
Customizing Graphs

Preview: Displays sample text with the selected attributes. This box does not accept input.

Apply same font to all tick labels: Check to change the fonts on all scales.

To edit line and scale font
1. Double-click the label.
2. Click the **Font** tab.
3. To change font attributes, do any of the following:
 - Under **Font**, type a font type or choose it from the list.
 - Under **Style**, check **Bold**, **Italic**, and/or **Underline**.
 - Under **Size**, type a font size or choose it from the list.
 - From **Color**, choose a text color.
4. To apply your font changes to all similar items, check **Apply same font to all tick labels** if available.
5. Click **OK**.

Edit Scale – Alignment

Select scale > Editor > Edit Scale > Alignment

Use to change the angle of the tick labels to improve legibility.

In most cases, Minitab adjusts the size of the tick labels and/or tilts them so they do not overlap; however you may need to further adjust the labels.

Dialog box items

Text angle: Choose a value from -360° to 360° to rotate the selected text.

To edit line and scale label alignment
1. Double-click the label.
2. Click the **Alignment** tab.
3. In **Text angle**, enter a value from -360° to 360° to rotate the selected text.
4. Under **Position**, do the following (not available with tick labels):
 - Choose **Automatic** to accept the default label position.
 - Choose **Custom** to change the default label position; then choose a position from the list.
5. Under **Offset**, do the following (not available with tick labels):
 - Choose **Automatic** to accept the default label placement.
 - Choose **Custom** to change the default label placement.
 - In **Horizontal**, enter the figure units to move the label to the left (−) or right (+).
 - In **Vertical**, enter the figure units to move the label up (+) or down (−).
6. Click **OK**.

Example of editing scale display, attributes, labels, font, and alignment

Suppose you have created a simple scatterplot for a presentation. You want to edit the scale's display, scale attributes, labels, font, and alignment.
Customizing and Editing Graphs

Creation
1. Open the worksheet PULSE.MTW.
2. Choose Graph > Scatterplot
3. Choose Simple and click OK.
4. In Y, enter Pulse1. In X, enter Weight.
5. Click OK.

Display
1. Double-click the y-scale.
2. Click the Show tab.
3. Check every item in the Low column, and check Axis line in the High column.
4. Click OK.

Attributes
1. Double-click the y-scale.
2. Click the Attributes tab.
4. In Length of Major Ticks, enter 0.02.
5. Click OK.

Labels
1. Double-click the y-scale.
2. Click the Labels tab.
3. Under Major Tick Labels, choose Specified and enter 'Very Low' 'Low Average' 'Average' 'Higher than Average' 'Very High'.
5. Click OK.
Font
1. Double-click the y-scale.
2. Click the Font tab.
3. From Color, choose [color].
4. Check Apply same font to all tick labels.
5. Click OK.

Alignment
1. Double-click the y-scale.
2. Click the Alignment tab.
3. In Angle, enter 25.
4. Click OK.

Edit Axis Label – Font
Select axis label > Editor > Edit Axis Label > Font
Use to change the axis label font or attributes.

Dialog box items
Font: Choose a font.
Style
 Bold: Check to make the text bold.
 Italic: Check to italicize the text.
 Underline: Check to underline the text.
Size: Enter a font size.
Color: Choose a text color.
Preview: Displays sample text with the selected attributes. This box does not accept input.
Text: Type text to change the existing axis label. Not available with all graphs.
Apply same font for Y and X axis labels: Check to apply attributes to both axis labels.

To edit line and scale font
1. Double-click the label.
2. Click the Font tab.
3. To change font attributes, do any of the following:
 • Under Font, type a font type or choose it from the list.
 • Under Style, check Bold, Italic, and/or Underline.
 • Under Size, type a font size or choose it from the list.
 • From Color, choose a text color.
4. To apply your font changes to all similar items, check Apply same font to all tick labels if available.
5. Click OK.
Customizing and Editing Graphs

Edit Axis Label – Text
Select matrix plot axis label > Editor > Edit Axis Label > Text
Edit axis label text on a matrix plot.

Dialog box items
Axis Labels
- Auto: Check or uncheck to accept or change the default axis label for the corresponding variable level.
- Custom: Enter a custom axis label for the corresponding variable level.

To edit axis label text
1. Double-click the axis label.
2. Click the Text tab.
3. For each variable, do one of the following:
 • Check Auto to accept the default axis label for the corresponding variable level.
 • Uncheck Auto to change the default axis label for the corresponding variable level.
 - Under Custom, enter a new axis label for the corresponding variable level.
4. Click OK.

Example of a simple matrix of plots
You are analyzing bear measurement data collected by a wildlife agency. The scales normally used to weigh bears in the field are cumbersome, and you hope to find simpler measurements that can act as reliable predictors of weight. Because it is unclear which variables are closely related to weight, create a simple matrix of plots to determine the relationship among the measurements. After creating the graph, edit the text of the axis labels.

Step 1: Create the graph
1. Open the worksheet BEARS2.MTW.
2. Choose Graph > Matrix Plot.
3. Choose Matrix of plots – Simple, then click OK.
4. In Graph variables, enter 'Head.L' 'Head.W' 'Neck.G' 'Chest.G' 'Weight'.
5. Click Matrix Options.
6. Under Matrix Display, choose Lower Left. Click OK in each dialog box.

Graph window output

Step 2: Edit the axis labels
2. Uncheck Auto for Variable 1.
3. Under Custom, enter Head Length.
5. Under Custom, enter Head Width.
9. Under Custom, enter Chest Girth. Click OK.

Graph window output

Interpreting the results
From this matrix of plots, chest girth and neck girth in a bear seem to be closely correlated with weight. It looks promising that you will be able to predict weight using other measurements.

Tip To see the row number and x- and y-values for a symbol, hover your cursor over it.

Edit Axis Label – Alignment
Select axis label > Editor > Edit Axis Label > Alignment
Use to rotate and move the axis labels.

Dialog box items
Offset
Automatic: Choose to accept the default label offset.
Custom: Choose to change the default label offset.
 Horizontal: Enter the figure units to move the label to the left (−) or right (+) of the placement chosen under Position.
 Vertical: Enter the figure units to move the label up (+) or down (−) from the placement chosen under Position.

To edit line and scale label alignment
1. Double-click the label.
2. Click the Alignment tab.
3. In Text angle, enter a value from -360° to 360° to rotate the selected text.
4. Under Position, do the following (not available with tick labels):
 • Choose Automatic to accept the default label position.
 • Choose Custom to change the default label position; then choose a position from the list.
5. Under Offset, do the following (not available with tick labels):
 • Choose Automatic to accept the default label placement.
Customizing and Editing Graphs

- Choose Custom to change the default label placement.
 - In Horizontal, enter the figure units to move the label to the left (−) or right (+).
 - In Vertical, enter the figure units to move the label up (+) or down (−).

6 Click OK.

Edit Axis Label – Show

Select axis label > Editor > Edit Axis Label > Show

Use to change axis label display.

Dialog box items

Show Label: Check or uncheck to show or hide axis labels with an interactions plot, each y-versus each x-matrix plot, or a secondary scale. With all other graphs, choose from the options below.

- **None**: Choose to hide the selected axis label.
- **Low side**: Choose to display the axis label on the low side.
- **High Side**: Choose to display the axis label on the high side.

To edit axis label display

1 Double-click the axis label.
2 Click the **Show** tab.
3 Under **Show Label**, check or uncheck **Low** or **High** to display the selected axis label on the low or high end of the scale.
4 Click OK.

Edit Matrix Plot Axis Label – Show

Select matrix plot axis label > Editor > Edit Axis Label > Show

Use to edit axis label display.

Dialog box items

Show Label: Check or uncheck to show or hide axis labels.

Variable Label Placement (only available with matrix of plots)

- **Diagonal**: Choose to place variable labels along the diagonal.
- **Boundary**: Choose to place variable labels along the boundary.

To edit matrix plot axis label display

1 Double-click the matrix plot axis label.
2 Click the **Show** tab.
3 Check or uncheck **Show labels** to show or hide axis labels.
4 Under **Variable Label Placement**, choose **Diagonal** or **Boundary**.
5 Click OK.

Example of editing axis label font, alignment, and display

In Example of editing scale display, attributes, labels, font, and alignment, you began with a simple scatterplot. You can also edit this graph's axis label text, font, and alignment.
Font
1. Double-click the y-axis label.
2. Under Style, check Italic.
3. Under Size, enter 12.
4. Check Apply same font to all axis labels.
5. Click OK.

Alignment
1. Double-click the y-axis label.
2. Click the Alignment tab.
3. In Text angle enter 45.
4. Click OK.

Show
1. Double-click the y-axis label.
2. Click the Show tab.
4. Click OK.
5. Double-click the x-axis label.
6. Click the Show tab.
7. Under Show Label, choose High side.
8. Click OK.

Y-Scale Type

Edit Histogram Scale – Type
Select y-scale > Editor > Edit Scale > Type
Use to choose the y-scale type of a histogram. By default, Minitab displays a frequency scale for histogram.

Dialog box items
Scale Type
 Frequency: Choose to use a frequency scale.
 Percent: Choose to use a percent scale.
 Density: Choose to use a density scale.

Accumulate values across bins: Check to accumulate values from left to right with each bar. This option cannot be used with the Density option.
Customizing and Editing Graphs

Edit Dendrogram Scale – Type
Select dendrogram scale > Editor > Edit > Type
Use to choose the y-scale type of a dendrogram.

Dialog box items
Scale Type
 Similarity: Choose to display similarities on the y-axis.
 Distance: Choose to display distances on the y-axis.

To edit histogram scale type
1 Double-click the scale.
2 Click the Type tab.
3 Under Scale Type, do one of the following:
 • Choose Frequency to change the scale type to represent frequency.
 • Choose Percent to change the scale type to represent percentages.
 • Choose Density to change the scale type to represent density.
4 If you have chosen Frequency or Percent, check Accumulate values across bins to accumulate values from left to right with each bar.
5 Click OK.

Edit Probability Plot and Empirical CDF Graph Scale – Type
Select y-scale > Editor > Edit > Type
Use to choose the y-scale type of a probability plot or an Empirical CDF graph. By default, Minitab displays a percent-scale for these types of graphs.

Dialog box items
Scale Type
 Percent: Choose to use a percent scale.
 Probability: Choose to use a probability scale.
 Score: Choose to use a scores scale. This option is only available with probability plots. (For calculations, see Method of obtaining probability plot points.)

To edit probability plot and Empirical CDF graph scale type
1 Double-click the scale.
2 Click the Type tab.
3 Under Scale Type, do one of the following:
 • Choose Frequency to change the scale type to represent frequency.
 • Choose Percent to change the scale type to represent percentages.
 • Choose Probability to change the scale type to represent probability.
 • Choose Score to change the scale type to represent scores. Only with probability plots.
4 Click OK.

Example of editing scale type
In Example of a probability plot, you created a graph with the default y-scale type, percent. You want to change the scale type to probability.

Note Similar scale-type editing functions are available for histograms, Empirical CDF graphs, and dendrograms.
1 Double-click the Percent scale.
2 Click Type.
3 Choose Probability. Click OK.
Graph window output

Gridlines

Edit Gridlines – Attributes

Select gridline > Editor > Edit Gridlines > Attributes

Use to specify the type, color, and size of your gridlines. To add gridlines to a graph, choose Editor > Add > Gridlines.

Dialog box items

Major Gridlines

- **Automatic**: Choose to accept the default line attributes.
- **Custom**: Choose to change the line attributes.
 - **Type**: Choose a line type.
 - **Color**: Choose a line color.
 - **Size**: Choose a line thickness.

Minor Gridlines (not available with simplex design plot)

- **Automatic**: Choose to accept the default line attributes.
- **Custom**: Choose to change the line attributes.
 - **Type**: Choose a line type.
 - **Color**: Choose a line color.
 - **Size**: Choose a line thickness.

Apply same attributes to gridlines of all scales: Check to apply the attributes set in this dialog to all gridlines on the graph.

To edit line and scale attributes

1. Double-click the scale or gridline.
2. Click the **Attributes** tab.
3. Under **Lines**, choose one of the following (When editing gridlines, these items will appear under Major Gridlines and Minor Gridlines):
 - **Automatic** to accept the default line type and color
 - **Custom** to pick your own line type and color
 - In **Type**, choose a line type.
 - In **Color**, choose a color.
 - In **Size**, choose a line thickness.
4. If you are editing scale attributes, under **Tick Orientation**, choose **Outside**, **Inside**, or **Out and In**.
5. In **Length of major ticks**, enter a value between 0 and 0.05.
6. Check **Apply same attributes to all scales** to apply your attribute changes to both the x- and y-axes.
7 Click OK.

Edit Gridlines – Show
Select gridline > Editor > Edit Gridlines > Show
Use to control the display of major and minor gridlines. To add gridlines to a graph, use Editor > Add > Gridlines.

Dialog box items
Show gridlines for major ticks: Check to display major gridlines.
Show gridlines for minor ticks: Check to display minor gridlines.

To edit gridline display
1 Double-click a gridline.
2 Click the Show tab.
3 Check or uncheck Show gridlines for major ticks.
4 Check or uncheck Show gridlines for minor ticks, then click OK.

Example of editing gridline attributes and display
The Example of displaying gridlines created a simple scatterplot with gridlines. You want to edit the gridline display and attributes.

Attributes
1 Double-click a gridline.
2 Under Major Gridlines, choose Custom.
3 From Color, choose .
4 From Size, choose 2.
5 Check Apply same attributes to gridlines of all scales.
6 Click OK.

Show
1 Double-click an x-scale gridline.
2 Click the Show tab.
3 Uncheck Show gridlines for minor ticks.
4 Click OK.

Reference Lines
Edit Reference Lines – Attributes
Select reference line > Editor > Edit Reference Line > Attributes
Specify the type, color, and size of reference lines. To add a reference line to a graph, choose Editor > Add > Reference Lines.
Dialog box items

Lines

- **Automatic**: Choose to accept the default line attributes.
- **Custom**: Choose to change the line attributes.
 - **Type**: Choose a line type.
 - **Color**: Choose a line color.
 - **Size**: Choose a line thickness.

Apply same attributes to all reference lines: Check to apply attribute changes to all reference lines in the graph.

To edit reference line attributes

1. Double-click a reference line.
2. Click the **Attributes** tab.
3. Under **Lines**, choose one of the following:
 - **Automatic** to accept the default line type and color
 - **Custom** to pick your own line type and color
 - In **Type**, choose a line type.
 - In **Color**, choose a color.
 - In **Size**, choose a line thickness.
4. Check **Apply same attributes to all reference lines** to apply your attribute changes to all similar items.
5. Click **OK**.

Edit Reference Line Labels – Show

- **Select reference line** > **Editor** > **Edit Reference Line** > **Show**
- **Select reference line label** > **Editor** > **Edit Line Label** > **Show**

Use to hide and specify the display of the label. To add a reference line to a graph, choose **Editor** > **Add** > **Reference Lines**.

Dialog box items

Show label

- **None**: Choose to hide reference line labels.
- **Low side**: Choose to display reference line labels on the low side of the graph.
- **High side**: Choose to display reference line labels on the high side of the graph. (Not available with all graphs.)

Apply same label option to all reference lines: Check to apply the same display preferences to all reference lines.

To edit reference line label display

1. Double-click a reference line or label.
2. Click the **Show** tab.
3. If available, check or uncheck **Show Label** to show or hide the reference line label.
4. If available, under **Show Label**, do one of the following:
 - Choose **None** to hide the reference line label.
 - Choose **Low side** to display the reference line label on the low side of the scale.
 - Choose **High side** to display the reference line label on the high side of the scale. (Not available with all graphs.)
5. Click **OK**.

Edit Reference Line Labels – Font

- **Select reference line label** > **Editor** > **Edit Line Label** > **Font**

Use to edit the reference line label font attributes. To add reference lines to a graph, choose **Editor** > **Add** > **Reference Lines**.

Dialog box items

Font: Choose a font.
Customizing and Editing Graphs

Style

Bold: Check to make the text bold.

Italic: Check to italicize the text.

Underline: Check to underline the text.

Size: Enter a font size.

Color: Choose a text color.

Preview: Displays sample text with the selected attributes. This box does not accept input.

Text: Type the reference line label.

Apply same font to all reference labels: Check to apply same font changes to all labels.

To edit reference line label font

1. Double-click a reference line label.
2. Click the **Font** tab.
3. To change font attributes, do any of the following:
 - Under **Font**, type a font type or choose it from the list.
 - Under **Style**, check **Bold**, **Italic**, and/or **Underline**.
 - Under **Size**, type a font size or choose it from the list.
 - From **Color**, choose a text color.
4. In **Text**, type the reference line label.
5. Check **Apply same font to all reference labels** to apply your font changes to all similar items.
6. Click **OK**.

Edit Reference Line Labels – Alignment

Select reference line label > Editor > Edit Line Label > Alignment

Use to rotate and move the reference line label. To add a reference line to a graph, choose **Editor > Add > Reference Lines**.

Tip You may find it easier to move reference line labels by clicking and dragging them.

Dialog box items

Text angle: Enter a value from -90° to 90° to rotate the selected text.

Position

- **Automatic:** Choose to accept the default label position.
- **Custom:** Choose to change the default label position; then choose a position from the list.

Offset

- **Automatic:** Choose to accept the default label placement.
- **Custom:** Choose to change the default label placement.
 - **Horizontal:** Enter the figure units to move the label to the left (−) or right (+) of the placement chosen under **Position**.
 - **Vertical:** Enter the figure units to move the label up (+) or down (−) from the placement chosen under **Position**.

Apply same alignment to all reference lines of this scale: Check to apply the new angle to all reference lines on the same scale.

To edit reference line label alignment

1. Double-click a reference line label.
2. Click the **Alignment** tab.
3. In **Text angle**, enter a value from -360° to 360° to rotate the selected text.
4. Under **Position**, do the following:
 - Choose **Automatic** to accept the default label position.
 - Choose **Custom** to change the default label position; then choose a position from the list.
5. Under **Offset**, do the following:
 - Choose **Automatic** to accept the default label placement.
• Choose **Custom** to change the default label placement.
 – In **Horizontal**, enter the figure units to move the label to the left (−) or right (+).
 – In **Vertical**, enter the figure units to move the label up (+) or down (−).

Tip You may find it easier to move reference line labels by clicking and dragging them.

6 Check **Apply same alignment to all reference lines of this scale** to apply the new angle to all reference lines on the same scale.

7 Click **OK**.

Example of editing reference lines and labels

In Example of a simple scatterplot you created a graph with a reference line. You can edit the reference line’s attributes and the label’s font, alignment, and display.

Attributes
Change the line color and size.
1 Double-click the reference line.
2 Under **Lines**, choose **Custom**.
3 From **Color**, choose .
4 In **Size**, enter 3.
5 Click **OK**.

Show
Change the label location.
1 Double-click the reference line label.
2 Click the **Show** tab.
3 Under **Show Label**, choose **Low side**.
4 Click **OK**.

Font
Change the label font color, style, and text.
1 Double-click the reference line label.
2 From **Color**, choose .
3 Under **Style** check **Bold**.
4 In **Text**, type **Acceptable Limit**.
5 Click **OK**.
Alignment
Change the label angle and position.
1 Double-click the reference line label.
2 Click the Alignment tab.
3 In Angle, type 25.
4 Under Position choose Custom. Then choose Above, to the left.
5 Click OK.

Percentile Lines
Edit Percentile Lines – Attributes
Select percentile line > Editor > Edit Percentile Line > Attributes
Use to change the type, color, and size of your percentile lines. To add a percentile line to a graph choose Editor > Add > Percentile Lines.

Dialog box items
Lines
 Automatic: Choose to accept the default line attributes.
 Custom: Choose to change the line attributes.
 Type: Choose a line type.
 Color: Choose a line color.
 Size: Choose a line thickness.

To edit percentile line attributes
1 Double-click a percentile line.
2 Click the Attributes tab.
3 Under Lines, choose one of the following:
 • Automatic to accept the default line type and color
 • Custom to pick your own line type and color
 – In Type, choose a line type.
 – In Color, choose a color.
 – In Size, choose a line thickness.
4 Click OK.

Edit Percentile Line Labels – Font
Select percentile line labels > Editor > Edit Line Label > Font
Select individual percentile line label > Editor > Edit Line Label > Font
Use to edit the percentile line label font attributes. To add data percentile lines to a graph, choose Editor > Add > Percentile Lines.

Dialog box items
Font: Choose a font.
Style
 Bold: Check to make the text bold.
 Italic: Check to italicize the text.
 Underline: Check to underline the text.
Size: Enter a font size.
Color: Choose a text color.
Customizing Graphs

Preview: Displays sample text with the selected attributes. This box does not accept input.

Text: Type the percentile line label. (only available when an individual percentile line label is selected)

Apply same font to all percentile line labels: Check to apply same font changes to all labels. (only available when an individual percentile line label is selected)

To edit percentile line label font
1. Select and double-click all percentile line labels or a single label. See Selecting groups and single items.
2. Click the **Font** tab.
3. To change font attributes, do any of the following:
 - Under **Font**, type a font type or choose it from the list.
 - Under **Style**, check **Bold**, **Italic**, and/or **Underline**.
 - Under **Size**, type a font size or choose it from the list.
 - From **Color**, choose a text color.
4. In **Text**, type the percentile line label. (only available if individual percentile line label is selected)
5. Check **Apply same font to all percentile labels** if available to apply your font changes to all similar items.
6. Click **OK**.

Edit Percentile Line Labels – Alignment

Select individual percentile line label > Editor > Edit Percentile Line > Alignment

Use to rotate and move the percentile line label. To add a percentile line to a graph, choose **Editor > Add > Percentile Lines**.

Tip You may find it easier to move percentile line labels by clicking and dragging them.

Dialog box items

- **Text angle:** Enter a value from –90° to 90° to rotate the selected text.
- **Position**
 - **Automatic:** Choose to accept the default label position.
 - **Custom:** Choose to change the default label position; then choose a position from the list.
- **Offset**
 - **Automatic:** Choose to accept the default label placement.
 - **Custom:** Choose to change the default label placement.
 - **Horizontal:** Enter the figure units to move the label to the left (–) or right (+) of the placement chosen under **Position**.
 - **Vertical:** Enter the figure units to move the label up (+) or down (–) from the placement chosen under **Position**.

Apply same alignment to all percentile line labels of this scale: Check to apply the new angle to all percentile line labels on the same scale.

To edit percentile line label alignment
1. Select and double-click all percentile line labels or a single label. See Selecting groups and single items.
2. Click the **Alignment** tab.
3. In **Text angle**, enter a value from -360° to 360° to rotate the selected text.
4. Under **Position**, do the following:
 - Choose **Automatic** to accept the default label position.
 - Choose **Custom** to change the default label position; then choose a position from the list
5. Under **Offset**, do the following (not available with tick labels):
 - Choose **Automatic** to accept the default label placement.
 - Choose **Custom** to change the default label placement.
 - In **Horizontal**, enter the figure units to move the label to the left (–) or right (+).
 - In **Vertical**, enter the figure units to move the label up (+) or down (–).

Tip You may find it easier to move percentile line labels by clicking and dragging them.
6. Click **OK**.
Example of editing percentile lines and labels

In Example of a probability plot, you created a graph with a percentile line. You can edit the line's attributes and label font. You can also edit an individual label's alignment.

Attributes
Change the line color and size.
1. Double-click the percentile line.
2. Under Lines, choose Custom.
3. From Color, choose
4. In Size, enter 3.
5. Click OK.

Font
Change the label color, style, and size.
1. Double-click a percentile line label.
2. From Color, choose
3. In Style, check Bold.
4. In Size, enter 12.
5. Click OK.

Alignment
Change an individual label angle.
1. Select the percentile line label.
2. Select and double-click 87.
3. Click the Alignment tab.
5. Click OK.

Scale Transformations

Edit Scale – Transform

Select scale > Editor > Edit Scale > Transform

Affect a logarithmic or power transformation on a scale. Only available with scatterplot, time series plot, and area graph.

Dialog box items

Transformation

None: Choose to remove an applied scale transformation.
Logarithm: Choose to perform a logarithmic transformation of the selected scale.
Base
10: Choose to use base 10.
Customizing Graphs

- **e**: Choose to use base e
- **2**: Choose to use base 2
- **Other**: Choose to enter a different value, then enter a number from 2 through 10

Power: Choose to perform a power transformation of the selected scale.

Enter a value between -5 and 5: Enter a power transformation value.

Note: After performing a scale power transformation, you must use the new units when editing that scale's min and max, tick and reference line positions, or annotation in data units. With a log transformation, use the original units. If the data contain nonpositive values, you cannot choose log transformation or power transformations with base values that are not positive integers.

To edit scale transformations
1. Double-click the scale.
2. Click the **Transform** tab.
3. Under **Transform**, do one of the following:
 - Choose **None** to remove an applied scale transformation.
 - Choose **Logarithm** to apply a logarithmic transformation. Then under **Base**, enter a value from 2 through 10 or e for the natural log.
 - Choose **Power** to change the power of the scale, then enter a value from -5 through 5.

Note: After performing a scale power transformation you must use the new units when editing that scale's min and max, tick and reference line positions, or annotation in data units. With a log transformation, use the original units. If your data contains nonpositive values you can't choose log transformations or power transformations with base values that are not positive integers.

4. Click **OK**.

Example of editing scale transformations

You are a vintner concerned about the cost of lab work done to measure sugar content in your grapes. A field test that can be done quickly at a lower cost seems promising. You hope a regression analysis will provide an equation to predict the precise reading, so you plot the readings against one another, using a scale transformation on the response variable to find an appropriate model.

Step 1 : Create the graph
1. Open the worksheet SUGAR.MTW
2. Choose **Graph > Scatterplot > choose With Regression > OK**.
3. In **Y**, enter **Field**. In **X**, enter **Lab**. Click **OK**.

Graph window output

Step 2 : Edit the transformation
1. Double-click the x-scale.
2. Click the Transform tab.
4. Under Base, choose 10. Click OK.

Graph window output

Interpreting the results
In the initial graph, it is clear that a regression fit is not appropriate with the original data. This pattern indicates that a transformation might be useful. A regression plot utilizing a log transformation of the response variable and a linear regression model would be most appropriate to find an equation for predicting lab results from in-field refractometer readings.

Secondary Scales

Edit Scale – Secondary

Select scale > Editor > Edit Scale > Secondary

You can specify that variables on a given axis are associated with a primary or secondary scale. By default, when overlaying two or more graph models, Minitab creates x- and y-scales that accommodate the full range of all variables on each axis. However, if the ranges of values for two variables are, for example, 0–10 and 500–1000, a scale that includes their collective range may not be appropriate for either. You can then assign these variables to primary and secondary scales to display different scales on the low and high side of the axis. You can only apply secondary scales to the continuous scales of overlaid scatterplots or time series plots, except when paneling is also applied.

<table>
<thead>
<tr>
<th>Without Secondary Scale</th>
<th>With Secondary Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scatterplot of Pulse1 vs Weight, Height</td>
<td>Scatterplot of Pulse1 vs Weight, Height</td>
</tr>
<tr>
<td>The two overlaid graphs share a common y-axis variable, but their y-axis variables have very different ranges. One set of variables in particular is difficult to interpret and is ill-suited to the use of common scales.</td>
<td>Here a secondary scale has been added. Both graphs still share the y-axis, but with independent x-axes the data region is used more effectively.</td>
</tr>
</tbody>
</table>
Dialog box items

Variable: Lists each variable represented on the selected axis. Does not take input.

Scale
- **Primary:** Choose to associate the variable with the primary scale.
- **Secondary:** Choose to associate the variable with the secondary scale.

To assign a secondary scale
1. Double-click the axis.
2. Click the **Secondary** tab.
3. Under **Scale**, choose **Primary** or **Secondary** for each variable to associate it with the primary or secondary scale.
4. Click **OK**.

Example of assigning a secondary scale
Suppose you have created an overlaid scatterplot displaying the relationships between two different y-axis variables and a common x-axis variable. Although you know the correlation of both pairs is very high, the resulting graph does not reflect this. Because the individual ranges of the y-axis variables are so different, adding a secondary scale may remedy the deceptive appearance.

Step 1: Create the graph
1. Open the worksheet BEARS.MTW.
2. Choose **Graph > Scatterplot**.
3. Click **Simple**, and then click **OK**.
4. In row 1, under **Y**, enter **Length** and under **X**, enter **Weight**.
5. In row 2, under **Y**, enter **Head.L** and under **X**, enter **Weight**.
6. Click **Multiple Graphs** and click the **Multiple Variables** tab.
7. Under **Show Graphs of Different Variables**, choose **Overlaid on the same page**, and click **OK** in each dialog box.

Graph window output

Step 2: Assign a secondary scale
1. Double-click the y-axis.
2. Click the **Secondary** tab.
3. Under **Scale for Length**, select **Primary** from the drop-down list.
4. Under **Scale for Head.L**, select **Secondary** from the drop-down list. Click **OK**.
Customizing and Editing Graphs

Graph window output

Time Scale

Edit Time Scale → Scale

Select scale > Editor > Edit Scale > Scale

Specify the range of the scale, as well as the tick increments and categories, on a time series plot or area graph.

Note Use the time scale's index values when setting minimum and maximum range cutoffs. For example, a minimum of 2 starts the scale at the second index point and a maximum of 3.5 ends the scale halfway between the third and fourth index point.

Dialog box items

Tick Positions

- **Automatic:** Choose to display default position of ticks on the selected scale.
- **Specify tick start/increment:** Choose to enter the tick increment on the selected scale.
- **Specify innermost tick positions:** Choose to enter the tick categories on the selected scale.

Scale Range

- **Minimum:** Uncheck to enter a minimum scale value.
- **Maximum:** Uncheck to enter a maximum scale value.

To edit time series plot and area graph scale range

1. Double-click the scale.
2. Under **Tick Positions**, do one of the following:
 - Choose **Automatic** to restore default tick positions.
 - Choose **Specify tick increment** to enter Tick start and Tick increment values for Day, Month, and Year.
 - Choose **Specify tick categories** to enter tick category values.
3. Under **Scale Range**, check **Auto** for both **Minimum** and **Maximum** to restore the default scale range, or do one or both of the following:
 - Uncheck **Auto** for **Minimum** to enter a custom minimum scale range.
 - Uncheck **Auto** for **Maximum** to enter a custom maximum scale range.

Note Use the time scale's index values when setting minimum and maximum range cutoffs. For example, a minimum of 2 starts the scale at the second index point and a maximum of 3.5 ends the scale halfway between the third and fourth index point.

4. Click **OK**.

Example of editing time series plot and area graph scale range

In the Example of a simple time series plot you graphed a company's quarterly sales over three years. You want to change the range of the graph to run from the first quarter of 2001 through the first quarter of 2002.
Note Use the time scale's index values when setting minimum and maximum range cutoffs. For example, a minimum of 2 starts the scale at the second index point and a maximum of 3.5 ends the scale halfway between the third and fourth index point.

1. Double-click the time scale.
2. Under Scale Range, uncheck Auto for both Minimum and Maximum.
3. In Minimum, enter 4.5.
4. In Maximum, enter 9.5.
5. Click OK.

Graph window output

![Time Series Plot of SalesB](image)

Edit Scale – Time

Select scale > Editor > Edit Scale > Time

Use to edit the time scale for the x-axis.

Dialog box items

Time Scale

- **Index**: Choose to label the x-axis with integers.
- **Calendar**: Choose to label the x-axis with a calendar scale, then choose the calendar units.
- **Clock**: Choose to label the x-axis with a clock scale, then choose the clock units.
- **Stamp**: Choose to label the x-axis with values from one or more stamp columns.
 - **Stamp columns (1-3)**: Enter up to three columns containing scale values.

Start Values

- **One set for all variables**: Choose to use the same start values for each variable. Type the start value for each component of the time scale.
- **One set for each variable**: Choose to use a different set of start values for each variable, if there are overlaid variables. For each variable, type the start values for each component of the time scale you chose.

Increment: Uncheck to enter the data interval between values on the innermost time scale.

Edit Scale – Time with Area Graph

Select scale > Editor > Edit > Time

Use to edit the time scale for the x-axis.

Dialog box items

Time Scale

- **Index**: Choose to label the x-axis with integers. Type the start value.
- **Calendar**: Choose to label the x-axis with a calendar scale, then choose the calendar units.
Clock: Choose to label the x-axis with a clock scale, then choose the clock units.
Stamp: Choose to label the x-axis with values from one or more stamp columns.
Start Values: Type the start value for each component of the time scale.
Increment: Uncheck to enter the data interval between values on the innermost time scale.

To edit the time scale
1 Double-click the time scale.
2 Click the Time tab.
3 Under Time Scale, choose one of the following:
 • Index to label the x-axis with integers.
 • Calendar to label the x-axis with a calendar scale.
 – Choose the calendar units.
 • Clock to label the x-axis with a clock scale.
 – Choose the clock units.
 • Stamp to label the x-axis with values from one or more stamp columns.
 – In Stamp columns (1-3), enter up to three columns containing scale values.
4 Under Start Values, choose one of the following (not available with area graph):
 • One set for all variables to use the same start values for each variable.
 – Type the start value for each component of the time scale.
 • One set for each variable to use a different set of start values for each variable, if there are overlaid variables.
 – For each variable, type the start values for each component of the time scale.
5 Uncheck Increment, and type a value to increment the innermost time scale.
6 Click OK.

Example of editing time series plot and area graph time scale
Suppose you have created a time scale plot of sales by quarter and year, starting with the first quarter of 2000. You would like to change the time scale to a generic index without reference to year.

Step 1: Create the graph
1 Open the worksheet NEWMARKET.MTW.
2 Choose Graph > Time Series Plot > choose Simple > OK.
3 In Series, enter SalesB.
4 Click Time/Scale, then click the Time tab.
5 Under Time Scale, choose Calendar. From the menu, choose Quarter Year.
6 Under Start Values, choose One set for all variables.
7 Under Quarter, type 1. Under Year, type 2000.
8 Click OK in each dialog box.

Step 2: Edit time
1 Double-click the time scale.
2 Click the Time tab.
3 Under Time Scale, choose Index.
4 Click OK.
Customizing Graphs

Graph window output

Time Series Plot of SalesB

Edit Categorical Scale – Show

Select scale > Editor > Edit Scale > Show

Use to change the display of ticks, axis lines, and axis labels in a categorical scale.

Dialog box items

Show

- **Axis line**: Check to display axis lines on the low and high side of the scale.
- **Major ticks**: Check to display major ticks on the low and high side of the scale.
- **Major tick labels**: Check to display major tick labels on the low and high side of the scale.
- **Show axis labels**: Check or uncheck to show or hide axis labels. (only available with multiple level categorical scales)
- **Show Pareto table**: Check or uncheck to show or hide the Pareto table displaying the corresponding count, percent, and cumulative percent for each bar. (only available with some Pareto charts)

Tip

To hide a single row of the Pareto table, select the row label and press [Delete].

To edit categorical scale display

1. Double-click the scale.
2. Click the **Show** tab.
3. Check **Low** or **High** to display each item on the low or high side of the scale.
4. With multiple level categorical scales, check or uncheck **Show axis labels** to show or hide axis labels.
5. Click **OK**.

Edit Scale – Attributes

Select scale > Editor > Edit Scale > Attributes

Use to change the type, color, and size of the axis line, as well as the tick orientation and length.

Dialog box items

Lines

- **Automatic**: Choose to accept the default line attributes.
- **Custom**: Choose to change the line attributes.
 - **Type**: Choose a line type.
 - **Color**: Choose a line color.
 - **Size**: Choose a line thickness.

Tick Orientation Not available with 3D graphs.
- **Outside**: Choose to display tick lines outside the axis line.
Customizing and Editing Graphs

Inside: Choose to display tick lines inside the axis line.

Out and In: Choose to display tick lines crossing the axis line.

Length of Major Ticks: Enter a value from 0 to 0.05 to change the tick length. Not available with 3D graphs.

Apply same attributes to all scales: Check to change attributes for both y- and x-axes.

To edit line and scale attributes
1. Double-click the scale or gridline.
2. Click the Attributes tab.
3. Under Lines, choose one of the following (When editing gridlines, these items will appear under **Major Gridlines** and **Minor Gridlines**):
 - **Automatic** to accept the default line type and color
 - **Custom** to pick your own line type and color
 - In **Type**, choose a line type.
 - In **Color**, choose a color.
 - In **Size**, choose a line thickness.
4. If you are editing scale attributes, under **Tick Orientation**, choose **Outside**, **Inside**, or **Out and In**.
5. In **Length of major ticks**, enter a value between 0 and 0.05.
6. Check **Apply same attributes to all scales** to apply your attribute changes to both the x- and y-axes.
7. Click **OK**.

Edit Categorical Scale – Labels with Single Level

Select scale > Editor > Edit Scale > Labels
Use to change tick labels in a single-level categorical scale.

Dialog box items

Major Tick Labels
- **Automatic:** Choose to accept automatic tick labels.
- **Specified:** Choose to enter custom tick labels.

Tip
If an item in this dialog box is grayed, it may be unavailable because the corresponding element has been unchecked in the Show tab. Check the item in Show, then return to this tab.

To edit categorical scale labels
1. Double-click the scale.
2. Click the Labels tab.
3. Under **Major Tick Labels**, do one of the following:
 - Choose **Automatic** to accept default tick labels.
 - Choose **Specify** and enter new tick labels.
3. Click **OK**.

Example of editing categorical scale labels – single level

Suppose you have created a graph with a categorical scale containing only one variable level. You decide to make the default categorical scale labels more descriptive. This example assumes you have created the graph in Example of a boxplot with groups.
1. Double-click the x-scale.
2. Click the Labels tab.
3. Under **Major Tick Labels**, choose **Specified** and enter `Saxony Shag ’Cut and Loop’ Berber`. Click **OK**.
Graph window output

Boxplot of Durability vs Carpet

To edit categorical scale labels with multiple levels
1 Double-click the scale.
2 Click the Labels tab.
3 Under Tick Labels, do the following for each level:
 - Check or uncheck Show to hide or display tick labels.
 - Check Auto to accept default labels, or uncheck to enter new labels.
4 Under Axis Label, do the following for each level:
 - Check or uncheck Show to hide or display the axis label.
 - Check Auto to accept the default label, or uncheck to enter new labels.

Example of editing categorical scale labels with multiple levels
Suppose you have created a graph with a categorical scale with more than one variable level. You decide to make the default categorical scale labels more descriptive. This example assumes you have created the graph in Example of a boxplot with multiple y's and groups.
1 Double-click the x-scale.
2 Click the Labels tab.
3 Under Tick Labels for Level 1, check Show and uncheck Auto.
4 In Custom, erase any existing text and enter "One Two Three."
5 Under Tick Labels for Level 1, check Show and uncheck Auto.
6 In Custom, erase any existing text and enter "Extrudon 3111 "Polydrip KK-4"."
Customizing and Editing Graphs

7 Under Axis Label for Level 1, check Show and uncheck Auto.
8 In Custom, erase any existing text and enter Week.
9 Under Axis Label for Level 2, check Show and uncheck Auto.
10 In Custom, erase any existing text and enter Model. Click OK.

Graph window output

Boxplot of Week 1, Week 2, Week 3 vs Machine

Data

<table>
<thead>
<tr>
<th>Week</th>
<th>Model</th>
<th>One</th>
<th>Two</th>
<th>Three</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Edit Scale - Font

Select scale > Editor > Edit Scale > Font
Use to change the tick label font or attributes.

Dialog box items

Font: Choose a font.

Style

Bold: Check to make the text bold.
Italic: Check to italicize the text.
Underline: Check to underline the text.

Size: Enter a font size.

Color: Choose a text color.

Preview: Displays sample text with the selected attributes. This box does not accept input.

Apply same font to all tick labels: Check to change the fonts on all scales.

To edit line and scale font

1 Double-click the label.
2 Click the Font tab.
3 To change font attributes, do any of the following:
 • Under Font, type a font type or choose it from the list.
 • Under Style, check Bold, Italic, and/or Underline.
 • Under Size, type a font size or choose it from the list.
 • From Color, choose a text color.
4 To apply your font changes to all similar items, check Apply same font to all tick labels if available.
5 Click OK.

Edit Scale – Alignment

Select scale > Editor > Edit Scale > Alignment
Use to change the angle of the tick labels to improve legibility.
In most cases, Minitab adjusts the size of the tick labels and/or tilts them so they do not overlap; however you may need to further adjust the labels.

Dialog box items

Text angle: Choose a value from -360° to 360° to rotate the selected text.

To edit line and scale label alignment

1. Double-click the label.
2. Click the Alignment tab.
3. In Text angle, enter a value from -360° to 360° to rotate the selected text.
4. Under Position, do the following (not available with tick labels):
 - Choose Automatic to accept the default label position.
 - Choose Custom to change the default label position; then choose a position from the list.
5. Under Offset, do the following (not available with tick labels):
 - Choose Automatic to accept the default label placement.
 - Choose Custom to change the default label placement.
 - In Horizontal, enter the figure units to move the label to the left (−) or right (+).
 - In Vertical, enter the figure units to move the label up (+) or down (−).
6. Click OK.

Example of editing scale display, attributes, labels, font, and alignment

Suppose you have created a simple scatterplot for a presentation. You want to edit the scale's display, scale attributes, labels, font, and alignment.

Creation

1. Open the worksheet PULSE.MTW.
2. Choose Graph > Scatterplot
3. Choose Simple and click OK.
4. In Y, enter Pulse1. In X, enter Weight.
5. Click OK.

Display

1. Double-click the y-scale.
2. Click the Show tab.
3. Check every item in the Low column, and check Axis line in the High column.
4. Click OK.
Attributes
1. Double-click the y-scale.
2. Click the Attributes tab.
4. In Length of Major Ticks, enter 0.02.
5. Click OK.

Labels
1. Double-click the y-scale.
2. Click the Labels tab.
3. Under Major Tick Labels, choose Specified and enter 'Very Low' 'Low Average' 'Average' 'Higher than Average' 'Very High'.
4. Click OK.

Font
1. Double-click the y-scale.
2. Click the Font tab.
3. From Color, choose
4. Check Apply same font to all tick labels.
5. Click OK.

Alignment
1. Double-click the y-scale.
2. Click the Alignment tab.
3. In Angle, enter 25.
4. Click OK.
Categorical Scale

Edit Categorical Scale – Scale

Select scale > Editor > Edit Scale > Scale

You can alter the placement of ticks and the space between categories in a categorical scale.

Dialog box items

Ticks for Innermost Displayed Category Labels

 Tick start: Uncheck to enter a custom tick start point that denotes which categorical position has the first tick. The default is one.
 Tick increment: Uncheck to enter a custom increment between ticks. The default is one.

Space Between Scale Categories

 Gap within clusters: Uncheck to enter a value from -1 to 1 to adjust the space between items in a cluster. Multiple level scales only.
 Gap between clusters: Uncheck to enter a value from 0 to 5 to adjust the space between clusters.

Include empty cells: Check or uncheck to include or exclude empty cells from the graph. You cannot undo changes made to this item. Multiple level scales only.

Transpose value and category scales: Check to switch the variables that are plotted on each axis.

To edit categorical scale range

1. Double-click the scale.
2. Click the Scale tab.
3. Under Ticks for Innermost Displayed Category Labels, do one or more of the following:
 - Check Auto for Tick start to accept the default tick start point.
 - Uncheck Auto for Tick start to change the tick start point, then enter a value.
 - Check Auto for Tick increment to accept the default tick increment.
 - Uncheck Auto for Tick increment to change the tick increment, then enter a value.
4. Under Space Between Scale Categories, do one or more of the following:
 - Check Auto for Gap within clusters to accept the default cluster gap.
 - Uncheck Auto for Gap within clusters to change the cluster gap, then enter a value.
 - Check Auto for Gap between clusters to accept the default gap between clusters.
 - Uncheck Auto for Gap between clusters to change the gap between clusters, then enter a value.
5. Check Include empty cells to include empty cells in the graph.
6. Check Transpose value and category scales to transpose the variables that are plotted on each axis.
7. Check OK.

Example of editing categorical scale – Scale

Suppose you have created a graph with a categorical scale. You decide to increase the space between both the scale clusters (Gap between clusters) and the items within the clusters (Gap within clusters).

Step 1: Create the graph

1. Open the worksheet PULSE.MTW.
2. Choose Graph > Bar Chart.
3. Under Bars represent, choose Counts of unique values.
4. Choose Cluster and click OK.
5. In Categorical variables, enter Ran.
6. In Additional categorical variables, enter Sex. Click OK.

Step 2: Edit the scale

1. Double-click the x-scale and click Scale.
2. Under Space between scale categories, in Gap within clusters, enter 1.
3. In Gap between clusters, enter 5.
4. Click OK.
Edit Categorical Scale – Show

Select scale > Editor > Edit Scale > Show

Use to change the display of ticks, axis lines, and axis labels in a categorical scale.

Dialog box items

Show

- **Show**
 - **Axis line**: Check to display axis lines on the low and high side of the scale.
 - **Major ticks**: Check to display major ticks on the low and high side of the scale.
 - **Major tick labels**: Check to display major tick labels on the low and high side of the scale.
 - **Show axis labels**: Check or uncheck to show or hide axis labels. (only available with multiple level categorical scales)
 - **Show Pareto table**: Check or uncheck to show or hide the Pareto table displaying the corresponding count, percent, and cumulative percent for each bar. (only available with some Pareto charts)

Tip
To hide a single row of the Pareto table, select the row label and press [Delete].

To edit categorical scale display

1. Double-click the scale.
2. Click the **Show** tab.
3. Check **Low** or **High** to display each item on the low or high side of the scale.
4. With multiple level categorical scales, check or uncheck **Show axis labels** to show or hide axis labels.
5. Click **OK**.

Edit Scale – Attributes

Select scale > Editor > Edit Scale > Attributes

Use to change the type, color, and size of the axis line, as well as the tick orientation and length.

Dialog box items

Lines

- **Automatic**: Choose to accept the default line attributes.
- **Custom**: Choose to change the line attributes.
 - **Type**: Choose a line type.
 - **Color**: Choose a line color.
 - **Size**: Choose a line thickness.

Tick Orientation Not available with 3D graphs.

- **Outside**: Choose to display tick lines outside the axis line.
Inside: Choose to display tick lines inside the axis line.
Out and In: Choose to display tick lines crossing the axis line.

Length of Major Ticks: Enter a value from 0 to 0.05 to change the tick length. Not available with 3D graphs.

Apply same attributes to all scales: Check to change attributes for both y- and x-axes.

To edit line and scale attributes
1. Double-click the scale or gridline.
2. Click the Attributes tab.
3. Under Lines, choose one of the following (When editing gridlines, these items will appear under Major Gridlines and Minor Gridlines):
 - Automatic to accept the default line type and color
 - Custom to pick your own line type and color
 - In Type, choose a line type.
 - In Color, choose a color.
 - In Size, choose a line thickness.
4. If you are editing scale attributes, under Tick Orientation, choose Outside, Inside, or Out and In.
5. In Length of major ticks, enter a value between 0 and 0.05.
6. Check Apply same attributes to all scales to apply your attribute changes to both the x- and y-axes.
7. Click OK.

Edit Categorical Scale – Labels with Single Level
Select scale > Editor > Edit Scale > Labels
Use to change tick labels in a single-level categorical scale.

Dialog box items
Major Tick Labels
- Automatic: Choose to accept automatic tick labels.
- Specified: Choose to enter custom tick labels.

Tip If an item in this dialog box is grayed, it may be unavailable because the corresponding element has been unchecked in the Show tab. Check the item in Show, then return to this tab.

To edit categorical scale labels
1. Double-click the scale.
2. Click the Labels tab.
3. Under Major Tick Labels, do one of the following:
 - Choose Automatic to accept default tick labels.
 - Choose Specify and enter new tick labels.
3. Click OK.

Example of editing categorical scale labels – single level
Suppose you have created a graph with a categorical scale containing only one variable level. You decide to make the default categorical scale labels more descriptive. This example assumes you have created the graph in Example of a boxplot with groups.
1. Double-click the x-scale.
2. Click the Labels tab.
3. Under Major Tick Labels, choose Specified and enter Saxony Shag 'Cut and Loop' Berber. Click OK.
Customizing and Editing Graphs

Graph window output

Edit Categorical Scale – Labels with Multiple Levels

Select `scale` > `Editor` > `Edit` > `Labels`

Use to change tick and axis labels of a multiple level categorical scale.

Dialog box items

Tick Labels

- **Show**: Check or uncheck to show or hide tick labels for each level.
- **Auto**: Check to accept default labels. Uncheck to enter custom tick labels for each level.

Axis Label

- **Show**: Check or uncheck to show or hide axis labels for each level.
- **Auto**: Check to accept default labels. Uncheck to enter custom tick labels for each level.

Tip

If an item in this dialog box is grayed, it may be disabled because the corresponding element has been unchecked in the Show tab. Check the item in Show, then return to this tab.

To edit categorical scale labels with multiple levels

1. Double-click the scale.
2. Click the `Labels` tab.
3. Under **Tick Labels**, do the following for each level:
 - Check or uncheck **Show** to hide or display tick labels.
 - Check **Auto** to accept default labels, or uncheck to enter new labels.
4. Under **Axis Label**, do the following for each level:
 - Check or uncheck **Show** to hide or display the axis label.
 - Check **Auto** to accept the default label, or uncheck to enter new labels.

Example of editing categorical scale labels with multiple levels

Suppose you have created a graph with a categorical scale with more than one variable level. You decide to make the default categorical scale labels more descriptive. This example assumes you have created the graph in Example of a boxplot with multiple y's and groups.

1. Double-click the x-scale.
2. Click the `Labels` tab.
3. Under **Tick Labels** for **Level 1**, check **Show** and uncheck **Auto**.
4. In **Custom**, erase any existing text and enter *One Two Three*.
5. Under **Tick Labels** for **Level 1**, check **Show** and uncheck **Auto**.
6. In **Custom**, erase any existing text and enter *"Extrudon 311" "Polydrip XX-4"*.
7 Under **Axis Label** for **Level 1**, check **Show** and uncheck **Auto**.
8 In **Custom**, erase any existing text and enter **Week**.
9 Under **Axis Label** for **Level 2**, check **Show** and uncheck **Auto**.
10 In **Custom**, erase any existing text and enter **Model**. Click **OK**.

Graph window output

![Boxplot of Week 1, Week 2, Week 3 vs Machine](image)

Edit Scale – Font

Select scale > Editor > Edit Scale > Font

Use to change the tick label font or attributes.

Dialog box items

- **Font**: Choose a font.
- **Style**
 - **Bold**: Check to make the text bold.
 - **Italic**: Check to italicize the text.
 - **Underline**: Check to underline the text.
- **Size**: Enter a font size.
- **Color**: Choose a text color.
- **Preview**: Displays sample text with the selected attributes. This box does not accept input.
- **Apply same font to all tick labels**: Check to change the fonts on all scales.

To edit line and scale font

1 Double-click the label.
2 Click the **Font** tab.
3 To change font attributes, do any of the following:
 - Under **Font**, type a font type or choose it from the list.
 - Under **Style**, check **Bold**, **Italic**, and/or **Underline**.
 - Under **Size**, type a font size or choose it from the list.
 - From **Color**, choose a text color.
4 To apply your font changes to all similar items, check **Apply same font to all tick labels** if available.
5 Click **OK**.

Edit Scale – Alignment

Select scale > Editor > Edit Scale > Alignment

Use to change the angle of the tick labels to improve legibility.
Customizing and Editing Graphs

In most cases, Minitab adjusts the size of the tick labels and/or tilts them so they do not overlap; however you may need to further adjust the labels.

Dialog box items

Text angle: Choose a value from -360° to 360° to rotate the selected text.

To edit line and scale label alignment

1. Double-click the label.
2. Click the **Alignment** tab.
3. In **Text angle**, enter a value from -360° to 360° to rotate the selected text.
4. Under **Position**, do the following (not available with tick labels):
 - Choose **Automatic** to accept the default label position.
 - Choose **Custom** to change the default label position; then choose a position from the list.
5. Under **Offset**, do the following (not available with tick labels):
 - Choose **Automatic** to accept the default label placement.
 - Choose **Custom** to change the default label placement.
 - In **Horizontal**, enter the figure units to move the label to the left (−) or right (+).
 - In **Vertical**, enter the figure units to move the label up (+) or down (−).
6. Click **OK**.
Labels Overview

When creating a graph, you can display labels to identify and explain your graph or your data points. After creating a graph, you can:

- Change the label characteristics, such as size, color, and location (see Editing Labels Overview).
- Add labels (see Adding Graph Elements).

Note: Axis, tick, reference line, and percentile line labels are associated with the graph scale (see Scale Overview). Panel labels are associated with their panels (see Paneling Graphs).

<table>
<thead>
<tr>
<th>Label type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titles and Footnotes</td>
<td> Add up to three titles and two footnotes to all graphs. By default, titles appear centered over the graph; footnotes appear at the lower left.</td>
</tr>
<tr>
<td>Data Labels</td>
<td> Label individual data points, medians, means, outliers, and endpoints.</td>
</tr>
<tr>
<td>Histogram Labels (Marginal Plot)</td>
<td> Display the frequency for each bar of the histogram.</td>
</tr>
</tbody>
</table>
Slice Labels (Pie Chart)

Label slices in a pie chart with category names, frequencies, or percents.

Table: Labels

<table>
<thead>
<tr>
<th>Graphs</th>
<th>Titles and Footnotes</th>
<th>Data Labels</th>
<th>Histogram Labels</th>
<th>Slice Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scatterplot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marginal Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histogram</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dotplot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stem-and-Leaf</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECDF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boxplot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Value Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bar Chart</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pie Chart</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Series Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area Graph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contour Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D Scatterplot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D Surface Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Creation

Titles and Footnotes

Labels → Titles / Footnotes

... > Labels > Titles/Footnotes

Use to display titles and footnotes. After creating a graph, you can:
- Change the title/footnote attributes and alignment (see Editing Labels Overview).
- Add titles and footnotes (see Adding Graph Elements).

Dialog box items

Title: Type a title, which replaces the default title and is centered above the graph.
Subtitle 1: Type a subtitle, which appears below the title. If you add a subtitle but do not add a title, the subtitle displays below Minitab's default title.

Subtitle 2: Type a second subtitle, which appears below the first subtitle.

Footnote 1: Type a footnote, which appears at the bottom left of the graph.

Footnote 2: Type a second footnote, which appears below the first footnote.

To add a title or footnote
1 In the graph dialog box, click Labels.
2 In Title, type a title, which replaces the default title and is centered above the graph.
3 In Subtitle 1 and Subtitle 2, type the subtitles, which appear below the title. If you add a subtitle, but do not add a title, the subtitle displays below Minitab's default title.
4 In Footnote 1, type a footnote, which appears at the bottom left of the graph.
5 In Footnote 2, type a second footnote, which appears below the first footnote.
6 Click OK.

Example of a scatterplot with connect line and data labels
You are interested in the winning times for the men's 1500-meter run in the Olympics from 1900 to 2000. Because the Olympic Games were canceled in 1916 (WWI), and in 1940 and 1944 (WWII), you have irregularly-spaced time intervals. Thus, rather than use Graph > Time Series Plot, you should create a scatterplot with connect line to illustrate these data. Include custom titles, footnotes, and data labels to clarify what is being shown in the graph.

1 Open the worksheet TRACK1500.MTW.
2 Choose Graph > Scatterplot.
3 Choose With Connect Line, then click OK.
4 Under Y variables, enter Time. Under X variables, enter Year.
5 Click Labels.
6 In Title, type Olympic Games Track & Field.
7 In Subtitle 1, type Winning times men's 1500-meter run.
8 In Footnote 1, type 1900-2000.
9 In Footnote 2, type Not held in 1916, 1940, and 1944.
10 Click the Data Labels tab.
11 Choose Use labels from column and enter Year.
12 Click OK in each dialog box.
Interpreting the results
From 1900 to 1960, winning times generally decreased. The data labels help show that during this period there were only two games, 1920 and 1948, in which the winning time did not decrease from the previous games. After 1960, the winning times changed very little.

In the early half of the century, improvements such as training methods, nutrition, track composition, and track shoes removed many barriers to faster times. After 1960, the limitations of the athletes may have had a greater impact on the improvement in times.

Example of a pie chart
As an engineer at a tire company, you want to identify the most common causes of air loss in tires. You collect field data from a select group of service stations over a three-month period. Using your summarized data, create a pie chart of the causes of air loss.

1. Open the worksheet TIRES.MTW.
2. Choose Graph > Pie Chart.
3. Choose Chart values from a table.
4. In Categorical variable, enter CausesA. In Summary variables, enter Counts.
5. Click Pie Chart Options. Under Order slices by, choose Decreasing volume. Click OK.
6. Click Labels. Click the Slice Labels tab.
7. Under Label pie slices with, check Percent.
8. Click OK in each dialog box.
Interpreting the results

The pie chart shows the relative frequency of each cause of air loss in the tires, ordered from most to least frequent. The first category begins at the top of the pie and the categories are arranged clockwise. The most frequent cause of air loss is Puncture, followed by Valve Stem Leak. The least frequent cause is Leak From Seating.

Tip
To see the category and percent value for a slice, value, hover your cursor over it.

Data Labels

Labels – Data Labels

Use to label each data point. After creating a graph, you can:
- Change the data labels or their attributes (see Editing Labels Overview).
- Add data labels (see Adding Graph Elements).

Dialog box items

Label Type

- None: Choose to suppress data labels.
- Use y-value labels: Choose to label each point with its y-axis value.
- Use row numbers: Choose to label each point with its worksheet row number. You cannot label histograms or bar charts with row numbers.
- Use labels from column: Choose to label points with values stored in a column. Enter a text, numeric, or date/time column that contains the data labels.

If graph data match worksheet rows, as for scatterplot, Minitab matches the label column to the data column by worksheet row number. If graph data are summaries of worksheet values, as for histogram and bar chart, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

To add data labels
1. In the graph dialog box, click Labels.
2. Click the Data Labels tab.
3. Choose one of the following:
 - Use y-value labels to label each point with its y-axis value.
 - Use row numbers to label each point with its worksheet row number. You cannot label histograms or bar charts with row numbers.
 - Use labels from column to label points with values stored in a column. Then, enter a text, numeric, or date/time column that contains the data labels.

 If graph data match worksheet rows, as for scatterplot, Minitab matches the label column to the data column by worksheet row number. If graph data are summaries of worksheet values, as for histogram and bar chart, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.
Customizing and Editing Graphs

column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

4 Click OK.

Example of a scatterplot with connect line and data labels

You are interested in the winning times for the men's 1500-meter run in the Olympics from 1900 to 2000. Because the Olympic Games were canceled in 1916 (WWI), and in 1940 and 1944 (WWII), you have irregularly-spaced time intervals. Thus, rather than use Graph > Time Series Plot, you should create a scatterplot with connect line to illustrate these data. Include custom titles, footnotes, and data labels to clarify what is being shown in the graph.

1 Open the worksheet TRACK1500.MTW.
2 Choose Graph > Scatterplot.
3 Choose With Connect Line, then click OK.
4 Under Y variables, enter Time. Under X variables, enter Year.
5 Click Labels.
6 In Title, type Olympic Games Track & Field.
7 In Subtitle 1, type Winning times men's 1500-meter run.
8 In Footnote 1, type 1900-2000.
9 In Footnote 2, type Not held in 1916, 1940, and 1944.
10 Click the Data Labels tab.
11 Choose Use labels from column and enter Year.
12 Click OK in each dialog box.

Graph window output

Interpreting the results

From 1900 to 1960, winning times generally decreased. The data labels help show that during this period there were only two games, 1920 and 1948, in which the winning time did not decrease from the previous games. After 1960, the winning times changed very little.

In the early half of the century, improvements such as training methods, nutrition, track composition, and track shoes removed many barriers to faster times. After 1960, the limitations of the athletes may have had a greater impact on the improvement in times.

Labels – Data Labels – Boxplot

... > Labels > Data Labels

Use to label outliers, data points, medians, or means. After creating a graph, you can:

• Change the data labels or their attributes (see Editing Labels Overview).
• Add data labels (see Adding Graph Elements).
Dialog box items

Label
- **None**: Choose to suppress data labels.
- **Outliers**: Choose to label each outlier.
- **Individual data**: Choose to label each data point.
- **Medians**: Choose to label each median.
- **Means**: Choose to label each mean.

Use y-value labels: Choose to label each point with its y-axis value.

Use row numbers: Choose to label each point with its worksheet row number. You cannot label medians or means with row numbers.

Use labels from column: Choose to label points with values stored in a column. Enter a text, numeric, or date/time column that contains the data labels.

For outliers, Minitab assigns labels from worksheet rows representing the outliers. For individual data labels, Minitab matches the label column to the data column by worksheet row number. For median and mean labels, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

To add data labels to a boxplot

1. In the graph dialog box, click **Labels**.
2. Click the **Data Labels** tab.
3. Under **Label**, choose one of the following:
 - **Outliers** to label each outlier.
 - **Individual data** to label each data point.
 - **Medians** to label each median.
 - **Means** to label each mean.
4. Choose one of the following:
 - **Use y-value labels** to label each point with its y-axis value.
 - **Use row numbers** to label each point with its worksheet row number. You cannot label medians or means with row numbers.
 - **Use labels from column** to label points with values stored in a column. Then, enter a text, numeric, or date/time column that contains the data labels.

 For outliers, Minitab assigns labels from worksheet rows representing the outliers. For individual data labels, Minitab matches the label column to the data column by worksheet row number. For median and mean labels, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

5. Click **OK**.

Example of a boxplot with groups

You want to assess the durability of four experimental carpet products. Samples of the carpet products are placed in four homes and you measure durability after 60 days. Create a boxplot with median labels and color-coded boxes to examine the distribution of durability for each carpet product.

1. Open the worksheet CARPET.MTW.
2. Choose **Graph > Boxplot** or **Stat > EDA > Boxplot**.
3. Under **One Y**, choose **With Groups**. Click **OK**.
4. In **Graph variables**, enter **Durability**.
5. In **Categorical variables for grouping (1-4, outermost first)**, enter **Carpet**.
6. Click **Labels**, then click the **Data Labels** tab.
7. From **Label**, choose **Medians**. Choose **Use y-value labels**. Click **OK**.
8. Click **Data View**.
9. In **Categorical variables for attribute assignment**, enter **Carpet**. Click **OK** in each dialog box.
Interpreting the results
Median durability is highest for Carpet 4 (19.75). However, this product also demonstrates the greatest variability, with an interquartile range of 9.855. In addition, the distribution is negatively skewed, with at least one durability measurement of about 10.

 Carpets 1 and 3 have similar median durabilities (13.52 and 12.895, respectively). Carpet 3 also exhibits the least variability, with an interquartile range of only 2.8925.

Median durability for Carpet 2 is only 8.625. This distribution and that of Carpet 1 are positively skewed, with interquartile ranges of about 5-6.

Tip
To see precise information for Q1, median, Q3, interquartile range, and N, hover your cursor over any part of the boxplot.

Labels – Data Labels – Interval Plot, Individual Value Plot
... > Labels > Data Labels
Use to label individual data points, interval endpoints, means, or medians. After creating a graph, you can:
• Change the data labels or their attributes (see Editing Labels Overview).
• Add data labels (see Adding Graph Elements).

Dialog box items
Label
 None: Choose to suppress data labels.
 Individual data: Choose to label each data point.
 Interval endpoints: Choose to label interval endpoints.
 Means: Choose to label each mean.
 Medians: Choose to label each median.
Use y-value labels: Choose to label each point with its y-axis value.
Use row numbers: Choose to label each point with its worksheet row number. You cannot label interval endpoints, means, or medians with row numbers.
Use labels from column: Choose to label points with values stored in a column. Enter a text, numeric, or date/time column that contains the data labels.

For individual data labels, Minitab matches the label column to the data column by worksheet row number. For interval endpoint, mean, and median labels, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

To add data labels to an interval plot
1 In the graph dialog box, click Labels.
2 Click the **Data Labels** tab.

3 Under **Label**, choose one of the following:
 - **Individual data** to label each data point.
 - **Interval endpoints** to label interval endpoints.
 - **Means** to label each mean.
 - **Medians** to label each median.

4 Choose one of the following:
 - **Use y-value labels** to label each point with its y-axis value.
 - **Use row numbers** to label each point with its worksheet row number. You cannot label interval endpoints, means, or medians with row numbers.
 - **Use labels from column** to label points with values stored in a column. Then, enter a text, numeric, or date/time column that contains the data labels.

 For individual data labels, Minitab matches the label column to the data column by worksheet row number. For interval endpoint, mean, and median labels, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

5 Click **OK**.

Example of an interval plot with groups
You want to assess the durability of four experimental carpet products. Samples of the carpet products are placed in four homes and you measure durability after 60 days. Create an interval plot to assess the durability. Include data labels for the means.

1 Open the worksheet **CARPET.MTW**.
2 Choose **Graph > Interval Plot** or **Stat > ANOVA > Interval Plot**.
3 Under **One Y**, choose **With Groups**. Click **OK**.
4 In **Graph variables**, enter **Durability**.
5 In **Categorical variables for grouping (1-4, outermost first)**, enter **Carpet**.
6 Click **Labels**, then click the **Data Labels** tab.
7 From **Label**, choose **Means**. Click **OK** in each dialog box.

Graph window output

![Interval Plot of Durability vs Carpet](image)

Interpreting the results

Labeling the means makes them easier to compare.

Carpet 4 has the highest mean value of 18.12, followed by Carpet 1 (14.48), Carpet 3 (12.81), and Carpet 2 (9.74). The intervals all overlap, so you cannot conclude that any of the means are different.

The confidence level for each interval is 95% by default. If you want to change the confidence level or assign a confidence level for the family of intervals, you can edit the interval bars or choose a Bonferroni confidence interval. See **Select bar > Editor > Edit Interval Bar > Options**.
Customizing and Editing Graphs

Note A suite of methods for comparing means is available with ANOVA.

Tip To see confidence interval information (estimate, interval, and N), hover your cursor over the interval bar. To see the mean, hover your cursor over the mean symbol.

Histogram Labels - Marginal Plot

Marginal Plot – Labels – Histogram Labels

... > Labels > Histogram Labels

Use to display y-value labels, which are the frequency for each bar of the histogram. After creating a graph, you can change the histogram label attributes (see Editing Labels Overview).

Dialog box items

Label histogram bars with y-value: Choose to label each bar of the histogram with its y-axis value (frequency).

To add histogram labels to a marginal plot

1. In the graph dialog box, click *Labels*.
2. Click the *Histogram Labels* tab.
3. Check *Label histogram bars with y-value* to label each bar with its frequency.
4. Click *OK*.

Examples of a marginal plot

As a quality control engineer for a camera battery manufacturer, you want to examine the relationship between flash recovery time (minimum time between flashes) and the voltage remaining in a camera battery. You create the three types of marginal plots to look at the distribution of each measurement.

With histograms

1. Open the worksheet BATTERIES.MTW.
2. Choose *Graph > Marginal Plot*.
3. Choose *With Histograms*, then click *OK*.
4. In *Y Variable*, enter *FlashRecov*.
5. In *X Variable*, enter *VoltsAfter*.
6. Click *Labels*, then click the *Histogram Labels* tab.
7. Check *Label histogram bars with y-value*, then click *OK* in each dialog box.

With boxplots

1. Open the worksheet BATTERIES.MTW.
2. Choose *Graph > Marginal Plot*.
3. Choose *With Boxplots*, then click *OK*.
4. In *Y Variable*, enter *FlashRecov*.
5. In *X Variable*, enter *VoltsAfter*. Click *OK*.
With dotplots
1. Open the worksheet BATTERIES.MTW.
2. Choose Graph > Marginal Plot.
3. Choose With Dotplots, then click OK.
4. In Y Variable, enter FlashRecov.
5. In X Variable, enter VoltsAfter. Click OK.

Interpreting the results
You can look at the scatterplot as well as the distributions of both x and y using histograms, boxplots, or dotplots.
- The scatterplots show a possible negative correlation between FlashRecov and VoltsAfter; that is, flash recovery time increases as the voltage decreases.
- The marginal distributions have clusters of points (about 5.0 - 5.5 for FlashRecov and about 1.1 for VoltsAfter), especially obvious with the histograms and dotplots.

Tip
To see information for an individual symbol, box, or bar, hover your cursor over it.

Slice Labels - Pie Chart

Pie Chart – Labels – Slice Labels
... > Labels > Slice Labels
Use to label slices in a pie chart with category names, frequencies, or percents. After creating a graph, you can change the slice labels and their attributes (see Editing Labels Overview).

Dialog box items
Label pie slices with
- Category name: Check to label each slice with the category name.
- Frequency: Check to label each slice with the number of observations.
- Percent: Check to label each slice with the percentage of the pie.

Draw a line from label to slice: Check to draw a line from each label to the slice.

To add slice labels to a pie chart
1. In the graph dialog box, click Labels.
2. Click the Slice Labels tab.
3. Under Label pie slices with, check one or more of the following:
 - Category name to label each slice with the category name.
 - Frequency to label each slice with the number of observations.
 - Percent to label each slice with the percentage of the pie.
4. If you like, check Draw a line from label to slice.
5. Click OK.

Example of a pie chart
As an engineer at a tire company, you want to identify the most common causes of air loss in tires. You collect field data from a select group of service stations over a three-month period. Using your summarized data, create a pie chart of the causes of air loss.
1. Open the worksheet TIRES.MTW.
2. Choose Graph > Pie Chart.
3. Choose Chart values from a table.
4. In Categorical variable, enter CausesA. In Summary variables, enter Counts.
Customizing and Editing Graphs

5 Click Pie Chart Options. Under Order slices by, choose Decreasing volume. Click OK.
6 Click Labels. Click the Slice Labels tab.
7 Under Label pie slices with, check Percent.
8 Click OK in each dialog box.

Graph window output

Interpreting the results
The pie chart shows the relative frequency of each cause of air loss in the tires, ordered from most to least frequent. The first category begins at the top of the pie and the categories are arranged clockwise. The most frequent cause of air loss is Puncture, followed by Valve Stem Leak. The least frequent cause is Leak From Seating.

Tip To see the category and percent value for a slice, value, hover your cursor over it.

Editing
Editing Labels Overview
After creating a graph, you can change the labels and customize their attributes. To add labels after creating a graph, use Editor > Add.

Label To change...
Titles and Footnotes • Font type, style, size, or color - see Edit Title / Footnote - Font
• Text - see Edit Title / Footnote - Font
• Position - see Edit Title / Footnote - Alignment

Data Labels and Histogram Labels (Marginal Plot) • Font type, style, size, or color - see Edit Data Labels - Font
• Text - see Edit Data Labels - Font
• Position and angle - see Edit Data Labels - Alignment
• Data label type or remove labels- see Edit Data Labels - Data Labels

Slice Labels (Pie Chart) • Font type, style, size, or color - see Edit Slice Labels - Font
• Category name slice label - see Edit Slice Labels - Font
• Position and angle - see Edit Slice Labels - Alignment
• Slice label type or remove labels- see Edit Slice Labels - Show
• Leader line type, size, or color - see Edit Slice Labels - Leader Lines

Note Axis and tick labels and reference and percentile line labels are associated with the graph scale (see Scale Editing Overview). Panel labels are associated with their panels (see panel editing).
Data Labels

Edit Data Labels – Font

Select data or histogram labels > Editor > Edit Data Labels > Font

Use to change the label font or its attributes. To add data labels to a graph, choose Editor > Add.

Dialog box items

Font: Enter a font name.
Style
 Bold: Check to make the text bold.
 Italic: Check to italicize the text.
 Underline: Check to underline the text.
Size: Enter a font size.
Color: Choose a text color.
Preview: Displays sample text with the selected attributes. This box does not accept input.
Text: Type text to change an existing data label (only available if an individual data label is selected).

To edit the data label font

Select and double-click all data labels or a single label. See Selecting groups and single items.
2 Click the Font tab.
3 To change font attributes, do any of the following:
 • Under Font, enter a font name.
 • Under Style, check Bold, Italic, and/or Underline.
 • Under Size, enter a font size.
 • From Color, choose a text color.
4 In Text, type text to change an existing data label. (Only available if an individual data label is selected.)
5 Click OK.

Edit Data Labels – Alignment

Select data or histogram labels > Editor > Edit Data Labels > Alignment

Use to rotate and move the labels. To add data labels or histogram labels to a graph, choose Editor > Add.

Tip You may find it easier to move labels by clicking and dragging them.

Dialog box items

Text Angle: Enter a value from –360° to 360° to rotate the selected text.
Position
 Automatic: Choose to accept the default label position.
 Custom: Choose to customize the label position; then choose a position from the list.
Offset
 Automatic: Choose to accept the default label offset.
 Custom: Choose to customize the label offset.
 Horizontal: Enter the figure units to move the label to the left (–) or right (+) of the placement chosen under Position.
 Vertical: Enter the figure units to move the label up (+) or down (–) from the placement chosen under Position.

To rotate or move a data label

1 Select and double-click all data labels or a single label. See Selecting groups and single items.
2 Click the Alignment tab.
3 In Text Angle, enter a value from –360° to 360° to rotate the selected text.
4 Under Position, choose one of the following:
 • Automatic to accept the default label position.
Customizing and Editing Graphs

- **Custom** to change the default label position; then choose a position from the list.

5 Under **Offset**, choose one of the following:
- **Automatic** to accept the default label offset.
- **Custom** to customize the label offset.
 - From **Horizontal**, enter the figure units to move the label to the left (−) or right (+) of the placement chosen under **Position**.
 - From **Vertical**, enter the figure units to move the label up (+) or down (−) from the placement chosen under **Position**.

Tip
You may find it easier to move individual data labels by clicking and dragging them.

6 Click **OK**.

Edit Data Labels – Data Labels

Select data labels > Editor > Edit Data Labels > Data Labels

Use to change the data label type. You must select all data labels. To add data labels, choose **Editor > Add**.

Dialog box items

Label Type

- **None**: Choose to suppress data labels.
- **Use y-value labels**: Choose to label each point with its y-axis value.
- **Use row numbers**: Choose to label each point with its worksheet row number. You cannot label histograms, bar charts, interval endpoints, means, or medians with row numbers.
- **Use labels from column**: Choose to label points with values stored in a column. Enter a text, numeric, or date/time column that contains the data labels. Minitab matches the label column to the data column by row number.

Note
If the label column is longer than the data column, Minitab ignores the extra labels. If it is shorter, Minitab does not label the remaining points.

To change the data label type

1 Select and double-click all data labels. See Selecting groups and single items.
2 Click the **Data Labels** tab.
3 Choose one of the following:
 - **None** to hide data labels.
 - **Use y-value labels** to label each point with its y-axis value.
 - **Use row numbers** to label each point with its worksheet row number. You cannot label histograms or bar charts with row numbers.
 - **Use labels from column** to label points with values stored in a column. Then, enter a text, numeric, or date/time column that contains the data labels. Minitab matches the label column to the data column by row number.

Note
If the label column is longer than the data column, Minitab ignores the extra labels. If it is shorter, Minitab does not label the remaining points.
4 Click **OK**.

Examples of editing data labels

In the Example of a boxplot with groups, you assessed the durability of four experimental carpet products. You want to customize the data labels.

Note
Similar editing functions are available for graphs that support data labels.
Alignment
Change the label offset.
1. Double-click any data label.
2. Click the Alignment tab.
3. Under Offset, choose Custom.
 - From Horizontal, choose 0.05.
4. Click OK.

Font
Change the font color and make it bold.
1. Double-click any data label.
2. Under Style, check Bold.
3. From Color, choose
4. Click OK.

Data labels
Change the data label type.
1. Double-click any data label.
2. Click the Data Labels tab.
3. Under Label Type, choose Use labels from column. Then enter Composition.
4. Click OK.

Slice Labels
Edit Slice Labels – Font
Select slice labels > Editor > Edit Slice Labels > Font
Use to change the slice label font or its attributes. To add slice labels to a pie chart, choose Editor > Add.

Dialog box items
Font: Enter a font name.
Style
 - Bold: Check to make the text bold.
 - Italic: Check to italicize the text.
 - Underline: Check to underline the text.
Size: Enter a font size.
Color: Choose a text color.
Preview: Displays sample text with the selected attributes. This box does not accept input.
Customizing and Editing Graphs

Text: Type text to change the category name slice label. (only available if an individual slice label is selected)

To edit the slice label font
1. Select and double-click all slice labels or a single label. See Selecting groups and single items.
2. Click the **Font** tab.
3. To change font attributes, do any of the following:
 - Under **Font**, enter a font name.
 - Under **Style**, check **Bold**, **Italic**, and/or **Underline**.
 - Under **Size**, enter a font size.
 - From **Color**, choose a text color.
4. In **Text**, type text to change the category name slice label. (only available if an individual slice label is selected)
5. Click **OK**.

Edit Slice Labels – Alignment

Select slice labels > Editor > Edit Slice Labels > Alignment

Use to rotate and move the slice labels. To add slice labels to a pie chart, choose **Editor > Add**.

Tip
You may find it easier to move slice labels by clicking and dragging them.

Dialog box items

Text angle: Choose a value from -360° to 360° to rotate the selected text.

Offset (only available if an individual slice label is selected)
- **Automatic**: Choose to accept the default label offset.
- **Custom**: Choose to customize the label offset.
 - **Horizontal**: Enter the figure units to move the label to the left (−) or right (+).
 - **Vertical**: Enter the **figure units** to move the label up (+) or down (−).

To rotate or move a slice label
1. Select and double-click all slice labels or a single slice label. See Selecting groups and single items.
2. Click the **Alignment** tab.
3. In **Text Angle**, enter a value from –360° to 360° to rotate the selected text.
4. Under **Offset**, choose one of the following:
 - **Automatic** to accept the default label offset.
 - **Custom** to customize the label offset. (only available if an individual slice label is selected)
 - From **Horizontal**, enter the figure units to move the label to the left (−) or right (+).
 - From **Vertical**, enter the figure units to move the label up (+) or down (−).

Tip
You may find it easier to move individual slice labels by clicking and dragging them.
5. Click **OK**.

Edit Slice Labels – Show

Select slice labels > Editor > Edit Slice Labels > Show

Use to change the pie chart slice label type.

Dialog box items

Label pie slices with
- **Category name**: Check to label each slice with the category name.
- **Frequency**: Check to label each slice with the number of observations.
- **Percent**: Check to label each slice with the percentage of the pie.

Show leader lines: Check to draw a line from each label to the slice.
To change the slice label type
1. Select and double-click all slice labels. See Selecting groups and single items.
2. Click the Show tab.
3. Under Label pie slices with, check one or more of the following:
 - Category name to label each slice with the category name.
 - Frequency to label each slice with the number of observations.
 - Percent to label each slice with the percentage of the pie.
4. If you like, check Show leader lines. Click OK.

Edit Slice Labels – Leader Lines
Select slice labels > Editor > Edit Slice Labels > Leader Lines
Use to change the type, color, and size of your slice label leader lines. To add slice label leader lines to a pie chart, choose Editor > Add > Slice Labels.

Dialog box items
Lines
 Automatic: Choose to accept the default line attributes.
 Custom: Choose to change the line attributes.
 Type: Choose a line type.
 Color: Choose a line color.
 Size: Choose a line thickness.

To edit the slice label leader lines
1. Select and double-click all slice labels. See Selecting groups and single items.
2. Under Lines, choose one of the following:
 - Automatic to accept the default line attributes.
 - Custom to customize the line attributes.
 – From Type, choose a line type.
 – From Color, choose a line color.
 – From Size, choose a line width.
3. Click OK.

Examples of editing slice labels
In the Example of a pie chart, you identified the most common causes of air loss in tires. You want to customize the pie slice labels.

Font
Change the color and make it bold.
1. Double-click any slice label.
2. Under Style, check Bold.
3. From Color, choose .
4. Click OK.
Customizing and Editing Graphs

Show

Change the display type and add leader lines.

1. Double-click any slice label.
2. Click the **Show** tab.
3. Under **Label Pie Slices with**, check **Frequency**. Uncheck **Percent**.
4. Check **Show Leader Lines**.
5. Click **OK**.

Alignment

Change the angle.

1. Double-click any slice label.
2. Click the **Alignment** tab.
3. In **Text angle**, type 45.
4. Click **OK**.

Leader Lines

Change the leader lines.

1. Double-click any slice label.
2. Click the **Leader Lines** tab.
3. Under **Lines**, choose **Custom**.
4. From **Color**, choose √
5. From **Size**, choose 2.
6. Click **OK**.

Titles and Footnotes

Edit Title / Footnote – Alignment

Select title or footnote > Editor > Edit Title
Edit Footnote > Alignment

Use to change the position of titles and footnotes. To add a title or footnote to a graph, choose **Editor > Add**.

Tip
You may find it easier to move titles and footnotes by clicking and dragging them.

Dialog box items

Position

- **Left side of figure**: Choose to left-justify the selected text within the figure region.
- **Centered**: Choose to center the selected text within the figure region.
- **Right side of figure**: Choose to right-justify the selected text within the figure region.

Offset

- **Automatic**: Choose to accept the default label offset.
Customizing Graphs

Custom: Choose to customize the label offset.

- **Horizontal:** Enter the figure units to move the title/footnote to the left (−) or right (+) of the placement chosen under **Position**.
- **Vertical:** Choose or type the number of figure units to move the title/footnote up (+) or down (−) from the placement chosen under **Position**.

To move a title or footnote
1. Double-click the title or footnote.
2. Click the **Alignment** tab.
3. Under **Position**, choose one of the following:
 - **Left side of figure** to left-justify the selected text within the figure region.
 - **Centered** to center the selected text within the figure region.
 - **Right side of figure** to right-justify the selected text within the figure region.
4. Under **Offset**, choose one of the following:
 - **Automatic** to accept the default label offset.
 - **Custom** to customize the label offset.
 - From **Horizontal**, enter the figure units to move the label to the left (−) or right (+) of the placement chosen under **Position**.
 - From **Vertical**, enter the figure units to move the label up (+) or down (−) from the placement chosen under **Position**.
5. Click **OK**.

Tip You may find it easier to move titles and footnotes by clicking and dragging them.

Edit Title / Footnote – Font

Select title or footnote > Editor > Edit Title

Edit Footnote > Font

Use to change the title and footnote text or customize its attributes. To add a title or footnote to a graph, choose **Editor > Add**.

Dialog box items

- **Font:** Enter a font name.

 Style
 - **Bold:** Check to make the text bold.
 - **Italic:** Check to italicize the text.
 - **Underline:** Check to underline the text.

- **Size:** Enter a font size.

- **Color:** Choose a text color.

- **Preview:** Displays sample text with the selected attributes. This box does not accept input.

- **Text:** Type text to change the existing title or footnote.

To edit the title/footnote font and text
1. Double-click the title or footnote.
2. Click the **Font** tab.
3. To change font attributes, do any of the following:
 - Under **Font**, enter a font name.
 - Under **Style**, check **Bold, Italic**, and/or **Underline**.
 - Under **Size**, enter a font size.
 - From **Color**, choose a text color.
4. In **Text**, type text to change the existing title or footnote.
5. Click **OK**.
Examples of editing titles and footnotes
In the Example of a scatterplot with connect line, you evaluated winning times for the men's 1500-meter run in the Olympics from 1900 to 2000. You want to customize the subtitle and footnote.

Note Similar editing functions are available for graphs that support titles and footnotes.

Font
Change the font color and italicize the subtitle.
1. Double-click the subtitle.
2. Under **Style**, check **Italic**.
3. From **Color**, choose [].
4. Click **OK** in each dialog box.

Alignment
Move the footnotes to the right side of the graph.
1. Double-click the top footnote.
2. Click the **Alignment** tab.
3. Under **Position**, choose **Right side of figure**.
4. Click **OK**.
5. Repeat steps 1-4 for the bottom footnote.
Graph Size, Background, Borders, Legends...

Graph Regions Overview
All Minitab graphs are divided into regions. After you create a graph, you can resize and relocate each region within the page, and reformat the color, fill patterns, edge line types, and more. See Region Editing Overview.

<table>
<thead>
<tr>
<th>Region</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph</td>
<td></td>
<td>The area just within the graph window, bounded here by a dotted line.</td>
</tr>
<tr>
<td>Figure</td>
<td></td>
<td>The area just within the graph region that includes the graph and all labels, bounded here by a dotted line.</td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td>The area in which the data are displayed, bounded here by a dotted line.</td>
</tr>
</tbody>
</table>
Legend

The boxed area in the upper right corner of a graph that keys the different symbols on the graph. Overlaid graphs and graphs with grouping variables display legends by default.

Output Tables

The boxed area below the legend that contains statistical output. Output tables are displayed with histograms, probability plots, Empirical CDF graphs, and some built-in graphs.

Graph Regions

Each graph window is a single graph region. When you print a graph, the graph region corresponds to one sheet of paper. While there are several options for placing graphs on a graph window, all of them occupy only one graph region. A graph region uses a coordinate system in placing items relative to the graph. See Region Coordinate Systems.

<table>
<thead>
<tr>
<th>Placement type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single graph with one variable</td>
<td>One graph per variable per graph window; the most common graphical application</td>
<td></td>
</tr>
</tbody>
</table>
Figure Regions

The figure region is where Minitab displays a single graph. The figure region contains items specific to a graph: data, legend, scale elements, titles, and footnotes. A figure region uses a coordinate system in placing items relative to the figure. See Region Coordinate Systems. The figure region usually fills the entire graph region; to place more than one figure region on a page, use a layout.
Data Regions

The data region of a graph is where Minitab displays the data. You can place additional text, lines, symbols, and polygons in the data region. A data region uses a coordinate system in placing items relative to the points on the graph. See Region Coordinate Systems.
When you panel a graph, you choose to display the resulting data regions on the same page.

Region Coordinate Systems

The graph, figure, and data regions each have their own coordinate systems for placing graph elements. Graph and figure region coordinate systems range from 0.0 to 1.0 in the x- and y-directions. A data region's coordinate system is determined by the scales that border it. In most cases it is easier to position annotation items and regions by dragging them than by specifying coordinates.

Graph units are used to place:
- One or more figure regions on a page
- Annotation items for the whole page, rather than for one graph

Figure units are used to place:
- The data region
- Annotation items such as titles and footnotes
- Scale elements such as axis labels and tick labels

Data units are used to place:
- Annotation items such as text, lines, markers, and polygons
- Scale elements such as tick lines and reference lines

Editing

Editing Graph Regions Overview

After you create a graph, you can customize the characteristics of each region.

<table>
<thead>
<tr>
<th>Region</th>
<th>To change...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph</td>
<td>• Color, fill type, border type and size - see Edit Graph and Figure Regions - Graph Attributes</td>
</tr>
<tr>
<td>Figure Region</td>
<td>• Color, fill type, border type and size - see Edit Graph and Figure Regions - Figure Attributes</td>
</tr>
<tr>
<td></td>
<td>• Position - see Edit Graph and Figure Regions - Figure Location</td>
</tr>
<tr>
<td>Data Region</td>
<td>• Color, fill type, border type and size - see Edit Data Region - Attributes</td>
</tr>
<tr>
<td></td>
<td>• Position - see Edit Data Region - Location</td>
</tr>
<tr>
<td>Legend</td>
<td>• Color, fill type, border type and size - see Edit Legend - Attributes</td>
</tr>
<tr>
<td></td>
<td>• Position - see Edit Legend - Location</td>
</tr>
<tr>
<td></td>
<td>• Title font - see Edit Legend - Header Font</td>
</tr>
<tr>
<td></td>
<td>• Body Font - see Edit Legend - Body Font</td>
</tr>
<tr>
<td></td>
<td>• Text - see Edit Text or Hide Cells</td>
</tr>
</tbody>
</table>
Customizing and Editing Graphs

Table
- Color, fill type, border type and size - see Edit Table - Attributes
- Position - see Edit Table - Location
- Title Font - see Edit Table - Header Font
- Body Font - see Edit Table - Body Font
- Text - see Edit Text or Hide Cells

Graph and Figure

Edit Graph Region – Graph Attributes
Select figure region > Editor > Edit Graph Region > Graph Attributes
After creating a graph, you can change the background fill and border attributes of the graph region.

Dialog box items

Fill Pattern
- **Automatic:** Choose to accept the default fill pattern.
- **Custom:** Choose to change the default fill pattern.
 - **Type:** Choose a fill type.
 - **Background color:** Choose a background color.

Borders and Fill Lines
- **Automatic:** Choose to accept the default border and fill lines.
- **Custom:** Choose to change the default border and fill lines.
 - **Type:** Choose a border line type.
 - **Color:** Choose a border and fill line color.
 - **Size:** Choose a border line thickness.

To change fill attributes of a graph region
1. Double-click the graph region.
2. Under **Fill Pattern**, choose one of the following:
 - **Automatic** to accept the default fill pattern.
 - **Custom** to change the default fill pattern.
 - From **Type**, choose a fill type.
 - From **Background color**, choose a background color.
3. Under **Borders and Fill Lines**, choose one of the following:
 - **Automatic** to accept the default border and fill lines.
 - **Custom** to change the default border and fill lines.
 - From **Type**, choose a border line type.
 - From **Color**, choose a border and fill line color.
 - From **Size**, choose a border line thickness.
4. Click **OK**.

Edit Graph Region – Graph Size
Select figure region > Editor > Edit Figure Region > Graph Size
After creating a graph, you can adjust the actual graph size or only the magnification of its displayed size. A graph's "true size" denotes its dimensions as it is printed, appended to the ReportPad, or copied into another application. Changing a graph's "zoomed size" affects none of these.

Dialog box items

True Size
- **Automatic:** Choose to accept the default graph size.
- **Custom:** Choose to customize the graph size.
 - **Width (in):** Type the graph width in inches.
Customizing Graphs

Height (in): Type the graph height in inches.

Zoomed Size (Relative to True Size)
- **200%**: Choose to magnify the graph 200%.
- **150%**: Choose to magnify the graph 150%.
- **100%**: Choose to return the graph to 100%.
- **75%**: Choose to reduce magnification of the graph to 75%.
- **50%**: Choose to reduce magnification of the graph to 50%.

Fit Window: Choose to fit the graph in the graph window.

Specify: Enter a magnification between 10 and 500.

Note The default height and width units are inches. To use metric units, adjust the Control Panel regional settings.

Note The settings in File > Page Setup will also affect the printed size of graphs.

To change the actual graph size
1. Double-click the graph region.
2. Click the **Graph Size** tab.
3. Under **True Size**, choose **Custom**.
4. In **Width**, type a value for the graph width.
5. In **Height**, type a value for the graph height. Click **OK**.

Note To change only the displayed graph size, not the printed size, adjust the zoom only. See To change the displayed graph size.

To change the displayed graph size
1. Double-click the graph region.
2. Click the **Graph Size** tab.
3. Under **Zoomed Size**, choose a percentage of the actual size to display the graph. Click **OK**.

Note This only changes the displayed size, not the printed size. See To change the actual graph size.

Edit Figure Region – Figure Attributes

Select data region > Editor > Edit Figure Region > Figure Attributes

After creating a graph, you can change the background fill and border attributes of the figure region.

Dialog box items

Fill Pattern
- **Automatic**: Choose to accept the default fill pattern.
- **Custom**: Choose to change the default fill pattern.
 - **Type**: Choose a fill type.
 - **Background color**: Choose a background color.

Borders and Fill Lines
- **Automatic**: Choose to accept the default border and fill lines.
- **Custom**: Choose to change the default border and fill lines.
 - **Type**: Choose a border line type.
 - **Color**: Choose a border and fill line color.
 - **Size**: Choose a border line thickness.

To change fill attributes of a figure region
1. Double-click the figure region.
2. Under **Fill Pattern**, choose one of the following:
 - **Automatic** to accept the default fill pattern.
 - **Custom** to change the default fill pattern.
Customizing and Editing Graphs

− From **Type**, choose a fill type.
− From **Background color**, choose a background color.

3 **Under Borders and Fill Lines**, choose one of the following:
 • **Automatic** to accept the default border and fill lines.
 • **Custom** to change the default border and fill lines.
 − From **Type**, choose a border line type.
 − From **Color**, choose a border and fill line color.
 − From **Size**, choose a border line thickness.

4 **Click OK**.

Edit Figure Region – Figure Location

Select figure region > Editor > Edit Figure Region > Figure Location

After creating a graph, you can control the size and placement of your figure region using graph coordinates. To display different types of graphs together, see Layout.

Tip It may be easier to resize or move figure regions by clicking and dragging them.

Dialog box items

Position of Figure Region Within a Graph

Automatic: Choose to accept the default region size and location.

Custom: Choose to change the default region size and location.

 • **X minimum**: Enter a number between 0 and 1 to specify the horizontal minimum position.
 • **X maximum**: Enter a number between 0 and 1 to specify the horizontal maximum position.
 • **Y minimum**: Enter a number between 0 and 1 to specify the vertical minimum position.
 • **Y maximum**: Enter a number between 0 and 1 to specify the vertical maximum position.

To change the size and placement of the figure region

1 Double-click the figure region.
2 Click the **Figure Location** tab.
3 **Under Position of Figure Region Within a Graph**, choose **Custom**.
4 In **X minimum**, **X maximum**, **Y minimum**, and **Y maximum**, type values between 0 and 1. Click **OK**.

Tip It may be easier to resize or move figure regions by clicking and dragging them.

Examples of editing the graph and figure region

In Example of a simple scatterplot you created a single figured graph. After creating this graph, you can edit its graph and figure region.

Graph Attributes

Change the graph region fill pattern.

1 Double-click the graph or figure region.
2 Click the **Graph Attributes** tab.
3 **Under Fill Pattern**, choose **Custom**.
4 From **Type**, choose . Click **OK**.

180 Copyright © 2003–2005 Minitab Inc. All rights reserved.
Graph Size
Change the graph region size.
1. Double-click the graph or figure region.
2. Click the Graph Size tab.
4. In Height, enter 6. Click OK.

Figure Location
Change the location of the figure region.
1. Double-click the graph or figure region.
2. Click the Figure Location tab.
3. Under Position of Figure Region Within a Graph, choose Custom.
4. In X minimum enter 0.1 and in X maximum enter 0.9.
5. In Y minimum enter 0.1 and in Y maximum enter 0.9. Click OK.
Figure Attributes
Change the figure region fill pattern.
1 Double-click the graph or figure region.
2 Click the Figure Attributes tab.
3 Under Fill Pattern, choose Custom.
4 From Type, choose [blank] Click OK.

Data

Edit Data Region – Attributes
Select data region > Editor > Edit Data Region > Attributes
After creating a graph, you can change the background fill and borders of the data region.

Dialog box items

Fill Pattern
- Automatic: Choose to accept the default fill pattern.
- Custom: Choose to change the default fill pattern.
- Type: Choose a fill type.
- Background color: Choose a background color.

Borders and Fill Lines
- Automatic: Choose to accept the default border and fill lines.
- Custom: Choose to change the default border and fill lines.
- Type: Choose a border line type.
- Color: Choose a border and fill line color.
- Size: Choose a border line thickness.

To change fill attributes of a data region
1 Double-click the data region.
2 Under Fill Pattern, choose one of the following:
 • Automatic to accept the default fill pattern.
 • Custom to change the default fill pattern.
 - From Type, choose a fill type.
 - From Background color, choose a background color.
3 Under Borders and Fill Lines, choose one of the following:
 • Automatic to accept the default border and fill lines.
 • Custom to change the default border and fill lines.
 - From Type, choose a border line type.
 - From Color, choose a border and fill line color.
 - From Size, choose a border line thickness.
4 Click OK.
Edit Data Region – Location

Select data region > Editor > Edit Data Region > Location

After creating a graph, you can control the size and placement of the data region using figure units. To display different types of graphs together, see Layout.

Tip It may be easier to resize or move data regions by clicking and dragging them.

Dialog box items

Position of Data Region Within a Figure

- Automatic: Choose to display default region size and location.
- Custom: Choose to specify region size and location.
 - X minimum: Enter a number between 0 and 1 to specify the horizontal minimum position.
 - X maximum: Enter a number between 0 and 1 to specify the horizontal maximum position.
 - Y minimum: Enter a number between 0 and 1 to specify the vertical minimum position.
 - Y maximum: Enter a number between 0 and 1 to specify the vertical maximum position.

To change the size and placement of the data region

1. Double-click in the data region.
2. Click the Location tab.
3. Under Position of Data Region Within a Figure, choose Custom.
4. In X minimum, X maximum, Y minimum, and Y maximum, type values between 0 and 1. Click OK.

Tip It may be easier to resize or move data regions by clicking and dragging them.

Example of editing the data region

In Example of a simple scatterplot you created a graph with a single data region. After creating this graph, you can edit its data region.

Attributes

Change the data region border.

1. Double-click the data region.
2. Click the Attributes tab.
4. From Type, choose ____________.
5. From Color, choose ________.
6. From Size, choose 5. Click OK.

Location

Change the location of the data region.

1. Double-click the data region.
2. Click the Location tab.
3. Under Position of Data Region Within a Figure, choose Custom.
4. In X minimum, enter 0.2, and in X maximum, enter 0.8.
5. In X minimum, enter 0.2, and in X maximum, enter 0.8. Click OK.
Legend

Edit Legend – Attributes

Select legend > Editor > Edit Legend > Attributes

After creating a graph, you can change the legend's fill and border attributes.

Dialog box items

Fill Pattern

Automatic: Choose to accept the default fill pattern.
Custom: Choose to change the default fill pattern.
Type: Choose a fill type.
Background color: Choose a background color.

Borders and Fill Lines

Automatic: Choose to accept the default border and fill lines.
Custom: Choose to change the default border and fill lines.
Type: Choose a border line type.
Color: Choose a border and fill line color.
Size: Choose a border line thickness.

To edit the legend attributes

1 Double-click the legend.
2 Under Fill Pattern, choose one of the following:
 • Automatic to accept the default fill pattern.
 • Custom to change the default fill pattern.
 – From Type, choose a fill type.
 – From Background color, choose a background color.
3 Under Borders and Fill Lines, choose one of the following:
 • Automatic to accept the default border and fill lines.
 • Custom to change the default border and fill lines.
 – From Type, choose a border line type.
 – From Color, choose a border and fill line color.
 – From Size, choose a border line thickness.
4 Click OK.

Edit Legend – Location

Select legend > Editor > Edit Legend > Location

After creating a graph, you can resize the legend and place it at precise x- and y-coordinates.

Tip It may be easier to resize or move legends by clicking and dragging them.

Dialog box items

Position of Legend Within a Figure

Automatic: Choose to display default legend size and location.
Custom: Choose to specify the legend size and location using figure units.

X minimum: Enter a number between 0 and 1 to specify the minimum horizontal position.
X maximum: Enter a number between 0 and 1 to specify the maximum horizontal position.
Y minimum: Enter a number between 0 and 1 to specify the minimum vertical position.
Y maximum: Enter a number between 0 and 1 to specify the maximum vertical position.

To move the legend or table

1 Double-click the legend or table.
2 Click the **Location** tab.

3 Under **Position of a Legend Within a Figure**, choose one of the following:
 - **Automatic** to display default size and location.
 - **Custom** to specify the size and location using figure units.
 - In **X minimum**, type a number between 0 and 1 to specify the minimum horizontal position.
 - In **X maximum**, type a number between 0 and 1 to specify the maximum horizontal position.
 - In **Y minimum**, type a number between 0 and 1 to specify the minimum vertical position.
 - In **Y maximum**, type a number between 0 and 1 to specify the maximum vertical position.

5 Click **OK**.

Tip It may be easier to resize or move legends and tables by clicking and dragging them.

Edit Legend – Header Font

Select legend > Editor > Edit Legend > Header Font

After creating a graph, you can change the legend title font or its attributes.

Dialog box items

- **Font**: Enter a font type.
- **Style**
 - **Bold**: Check to make the text bold.
 - **Italic**: Check to italicize the text.
 - **Underline**: Check to underline the text.
- **Size**: Enter a font size.
- **Color**: Choose a text color.
- **Preview**: Displays sample text with the selected attributes applied. This box does not accept input.

To edit the legend header font

1 Double-click in the legend.

2 Click the **Header Font** tab.

3 To change font attributes, do any of the following:
 - Under **Font**, type a font or choose it from the list.
 - Under **Style**, check **Bold**, **Italic**, and/or **Underline**.
 - Under **Size**, type a font size or choose it from the list.
 - From **Color**, choose a text color.

4 Click **OK**.

Edit Legend – Body Font

Select legend > Editor > Edit Legend > Body Font

After creating a graph, you can change the legend text font or its attributes.

Dialog box items

- **Font**: Enter a font type.
- **Style**
 - **Bold**: Check to make the text bold.
 - **Italic**: Check to italicize the text.
 - **Underline**: Check to underline the text.
- **Size**: Enter a font size.
- **Color**: Choose a text color.
- **Preview**: Displays sample text with the selected attributes applied. This box does not accept input.

To edit the legend body font

1 Double-click in the legend.
Customizing and Editing Graphs

2 Click the Body Font tab.
3 To change font attributes, do any of the following:
 • Under Font, type a font or choose it from the list.
 • Under Style, check Bold, Italic, and/or Underline.
 • Under Size, type a font size or choose it from the list.
 • From Color, choose a text color.
4 Click OK.

Edit Text

Select text > Editor > Edit Legend Text
Select text > Editor > Edit Table Text
Use to edit the selected legend or table text.

Note You can't change calculated output.

Dialog box item
Text: Type the new text.

To edit legend or table text
1 Click in the legend or table.
2 Double-click the text you wish to edit.
3 In Text, type the new text.
4 Click OK.

Note You can't change calculated output.

Hide Cells

Select legend text > [Delete]
Select table text > [Delete]
After creating a graph, you can hide parts of the legend or table.

Dialog box items
Hide
Row: Choose to hide the row containing the selected text.
Column: Choose to hide the column containing the selected text.

To hide legend or table text
1 Click in the legend or table.
2 Select the text you wish to hide.
3 Do one of the following:
 • Right-click on the text and choose Delete.
 • Click on the graph toolbar.
 • Press [Delete].
4 Under Hide, choose one of the following:
 • Row to hide the row containing the selected text.
 • Column to hide the column containing the selected text.
5 Click OK.

Examples of editing the legend
In the Example scatterplot with groups, you evaluated the relationship between the voltage remaining in your batteries immediately after a flash and the length of time required for a battery to be ready to support another flash. You want to customize the legend.
Header Font
Change the header font type, make it bold, and increase the size.
1. Double-click the legend.
2. Click the Header Font tab.
3. From Type, choose Franklin Gothic Medium.
4. Under Style, check Bold.
5. From Size, choose 12. Click OK.

Body Font
Change the body font type and increase the size.
1. Double-click the legend.
2. Click the Body Font tab.
3. From Type, choose Franklin Gothic Medium.
4. From Size, choose 12. Click OK.

Body Text
Change the label names.
1. Click the legend.
2. Double-click New.
3. Under Text, type AK-410. Click OK.
4. Double-click Old.
5. Under Text, type AK-210. Click OK.

HeaderText
Delete the header.
1. Click the legend.
2. Click Formulation and press [Delete].
3. Under Hide, choose Row. Click OK.
Customizing and Editing Graphs

Attributes
Change fill color, border type, and border size.
1. Double-click the legend.
2. Under Fill Pattern, choose Custom.
3. From Background Color, choose .
5. From Type, choose .
6. From Size, choose 2. Click OK.

Location
Move the legend down.
1. Double-click the legend.
2. Click the Location tab.
3. Under Position of a Legend Within a Figure, choose Custom.
4. In X minimum, type 0.76.
5. In Y minimum, type 0.61.
6. In X maximum, type 0.95.
7. In Y maximum, type 0.75. Click OK.

Table
Edit Table – Attributes
Select table > Editor > Edit Table > Attributes
On many graphs, Minitab displays a table containing statistical output. After creating a graph, you can change the table’s fill and border attributes.

Dialog box items
Fill Pattern
Automatic: Choose to accept the default fill pattern.
Custom: Choose to change the default fill pattern.
Type: Choose a fill type.
Background color: Choose a background color.

Borders and Fill Lines
Automatic: Choose to accept the default border and fill lines.
Custom: Choose to change the default border and fill lines.
Type: Choose a border line type.
Color: Choose a border and fill line color.
Size: Choose a border line thickness.

To edit the table attributes
1. Double-click the table.
2. Under Fill Pattern, choose one of the following:
 • Automatic to accept the default fill pattern.
 • Custom to change the default fill pattern.
 – From Type, choose a fill type.
 – From Background color, choose a background color.
3. Under Borders and Fill Lines, choose one of the following:
Customizing Graphs

- **Automatic** to accept the default border and fill lines.
- **Custom** to change the default border and fill lines.
 - From **Type**, choose a border line type.
 - From **Color**, choose a border and fill line color.
 - From **Size**, choose a border line thickness.

4 Click **OK**.

Edit Table – Location

Select table > Editor > Edit Table > Location

On many graphs, Minitab displays a table containing statistical output. After creating a graph, you can resize the table and place it at precise x- and y-coordinates.

Tip It may be easier to resize or move tables by clicking and dragging them.

Dialog box items

Position of Output Table Within a Figure

- **Automatic**: Choose to display default output table size and location.
- **Custom**: Choose to specify the output table size and location using figure units.
 - **X minimum**: Enter a number between 0 and 1 to specify the minimum horizontal position.
 - **X maximum**: Enter a number between 0 and 1 to specify the maximum horizontal position.
 - **Y minimum**: Enter a number between 0 and 1 to specify the minimum vertical position.
 - **Y maximum**: Enter a number between 0 and 1 to specify the maximum vertical position.

5 Click **OK**.

Tip It may be easier to resize or move legends and tables by clicking and dragging them.

Edit Table – Header Font

Select table > Editor > Edit Table > Header Font

On many graphs, Minitab displays a table containing statistical output. After creating a graph, you can change the font of the table section titles or its attributes.

Dialog box items

- **Font**: Enter a font type.
- **Style**
 - **Bold**: Check to make the text bold.
 - **Italic**: Check to italicize the text.
 - **Underline**: Check to underline the text.
- **Size**: Enter a font size.
- **Color**: Choose a text color.
- **Preview**: Displays sample text with the selected attributes applied. This box does not accept input.
Customizing and Editing Graphs

To edit the table header font
1. Double-click in the table.
2. Click the Header Font tab.
3. To change font attributes, do any of the following:
 - Under Font, type a font or choose it from the list.
 - Under Style, check Bold, Italic, and/or Underline.
 - Under Size, type a font size or choose it from the list.
 - From Color, choose a text color.
4. Click OK.

Edit Table – Body Font
Select table > Editor > Edit Table > Body Font
On many graphs, Minitab displays a table containing statistical output. After creating a graph, you can change font of the table body text or its attributes.

Dialog box items
Font: Enter a font type.
Style
 - Bold: Check to make the text bold.
 - Italic: Check to italicize the text.
 - Underline: Check to underline the text.
Size: Enter a font size.
Color: Choose a text color.
Preview: Displays sample text with the selected attributes applied. This box does not accept input.

To edit the table body font
1. Double-click in the table.
2. Click the Body Font tab.
3. To change font attributes, do any of the following:
 - Under Font, type a font or choose it from the list.
 - Under Style, check Bold, Italic, and/or Underline.
 - Under Size, type a font size or choose it from the list.
 - From Color, choose a text color.
4. Click OK.

Edit Text
Select text > Editor > Edit Legend Text
Select text > Editor > Edit Table Text
Use to edit the selected legend or table text.

Note You can’t change calculated output.

Dialog box item
Text: Type the new text.

To edit legend or table text
1. Click in the legend or table.
2. Double-click the text you wish to edit.
3. In Text, type the new text.
4. Click OK.

Note You can’t change calculated output.
Customizing Graphs

Hide Cells
Select legend text > [Delete]
Select table text > [Delete]

After creating a graph, you can hide parts of the legend or table.

Dialog box items
Hide

Row: Choose to hide the row containing the selected text.
Column: Choose to hide the column containing the selected text.

To hide legend or table text
1 Click in the legend or table.
2 Select the text you wish to hide.
3 Do one of the following:
 - Right-click on the text and choose Delete.
 - Click on the graph toolbar.
 - Press [Delete].
4 Under Hide, choose one of the following:
 - Row to hide the row containing the selected text.
 - Column to hide the column containing the selected text.
5 Click OK.

Examples of editing the table
In the Example of a probability plot, you assessed the flammability of a new fabric. You want to customize the table.

Body Font
Change the body font type and color and increase the size.
1 Double-click the table.
2 Click the Body Font tab.
3 From Type, choose Trebuchet MS.
4 From Color, choose .
5 From Size, choose 12. Click OK.

Text
Delete statistics.
1 Click the table.
2 Click N and press [Delete].
3 Under Hide, choose Row. Click OK.
4 Click AD and press [Delete].
5 Under Hide, choose Row. Click OK.
Customizing and Editing Graphs

Body Text
Change labels.
1. Click the table.
2. Double-click StDev.
3. Under Text, type SD. Click OK.
4. Double-click P-Value.
5. Under Text, type P. Click OK.

Attributes
Change fill color, border color, and border size.
1. Double-click the table.
2. Under Fill Pattern, choose Custom.
3. From Background Color, choose .
5. From Color, choose .
6. From Size, choose 2. Click OK.

Location
Move the table down.
1. Double-click the table.
2. Click the Location tab.
3. Under Position of Output Table Within a Figure, choose Custom.
4. In Y minimum, enter 0.14.
5. In Y maximum, enter 0.33. Click OK.
Multiple Graphs

Multiple Graphs Overview
You can control the way multiple graphs are displayed when they are created from a single graph dialog box. First, decide how the multiple graphs will be achieved:

- Use the **Multiple Variables** tab when you have entered multiple variables (or multiple pairs of variables, in the case of a scatterplot) in a single graph dialog box.
- Use the **By Variables** tab when using a categorical variable to divide graph variables into separate graphs.

After choosing the way you will create the multiple graphs, decide how to display the resulting graphs:

- Overlay the graphs in the same data region.
- Place the graphs in separate areas of the same graph window.
- Place the graphs in separate graph windows.

All the options above are illustrated below. After creating the graphs you can:

- Edit paneling characteristics and the By Variables used to separate the graphs into panels.
- Make a similar graph using different graph variables or By variables.
- Display different types of graphs on the same page with layout tool.
- Alter attribute assignments for groups and overlaid graphs.

Multiple Variables Options
If you have entered two pairs of graphing variables in a scatterplot dialog box, you can choose to display the resulting graphs one of three ways:

On Separate Graphs

In Separate Panels
Overlaid

By Variables Options
If you have entered one pair of graphing variables in a scatterplot dialog box and want to use a categorical By variable, you can choose to display the resulting graphs one of two ways:

In Separate Panels

In Separate Graphs

Note You cannot create multiple matrix plots, marginal plots, stem-and-leaf plots, contour plots, or 3-D plots.

Attribute Assignments
Minitab automatically assigns different data display attributes for:
- Each group
- Each variable (or pair of variables) on an overlaid graph
If you overlay or panel multiple graphs and use grouping variables, attributes are assigned to the graphs first, then to the groups. After creating a graph, you can edit data display attributes for groups or multiple graphs. See Editing Data Display Overview.

Grouping Variables

To distinguish between data belonging to different groups, you can add categorical grouping variables to a graph. The grouping variables you use depend on the organization of the worksheet data. See Organizing Your Data. To specify the groups:

- Choose a With Groups option from a gallery, then enter the grouping variables in the data source dialog box. Minitab assigns different data display attributes for each group, then creates a legend. You can add a grouping variable to a graph by double-clicking its data display (symbols or bars, for example) and choosing the **Groups** tab.
- Click **Multiple Graphs**, click the **By Variables** tab, and enter the grouping variable. Different data displays are not assigned, because each group is displayed in a separate panel or graph. You can add a paneling variable to a graph by choosing **Editor > Panel**.

Data displays or panel arrangements are assigned according to the order the variables are specified in the dialog box. Compare the group order in these examples:

<table>
<thead>
<tr>
<th>Grouping by Year, AdAgency, and Quarter</th>
<th>Grouping by Quarter, Year, and AdAgency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row</td>
<td>Year</td>
</tr>
<tr>
<td>1</td>
<td>1991</td>
</tr>
<tr>
<td>2</td>
<td>1991</td>
</tr>
<tr>
<td>3</td>
<td>1991</td>
</tr>
<tr>
<td>4</td>
<td>1991</td>
</tr>
<tr>
<td>5</td>
<td>1992</td>
</tr>
<tr>
<td>6</td>
<td>1992</td>
</tr>
<tr>
<td>7</td>
<td>1992</td>
</tr>
<tr>
<td>8</td>
<td>1992</td>
</tr>
</tbody>
</table>

When grouping by **Year, AdAgency, and Quarter** (above left):
1. Minitab selects rows with the lowest value in **Year**, 1991 (rows 1–4).
2. From those four rows, Minitab selects rows that have the earliest alphabetical order in **AdAgency**, Alpha (rows 3 and 4).
3. From those two rows, Minitab selects the row with the lowest **Quarter**, 3 (row 3), which makes row 3 the first group.

You can see how the order changes (above right) when Minitab selects first by **Quarter**, then by **Year**, and finally by **AdAgency**.

Whether you are creating a graph With Groups or using panels, missing groups values and empty cells can effect the look of your graph. See Using Group Options.

Creation

Multiple Variables

```
... > Multiple Graphs > Multiple Variables
```

Controls the placement and scales of multiple graphs created in the same graph dialog box. After creating a graph, you can:

- Change the variables used to create the graphs. See Make Similar Graph.
- Change the characteristics of the panels. See panel editing.
- Change the scales used on each axis. See Scale Editing Overview.

Dialog box items

Show (Pairs of) Graph Variables

- **Overlaid on the same graph**: Choose to overlay graphs on the same data region. See Overlaying Graphs.
- **In separate panels of the same graph**: Choose to display each graph in a separate section of the same page. See Paneling Graphs.
Customizing and Editing Graphs

On separate graphs: Choose to display each graph in its own graph window.

Same Scales for Graphs: Only available when you choose **In separate panels on the same graph** or **On separate graphs**. Available options depend on the graph.
- **Same Y**: Choose to use the same y-axis scales for all graphs.
- **Same X**: Choose to use the same x-axis scales for all graphs.
- **Same number of data values per dot**: Choose to make dots on separate graphs share data values.
- **Same X, including same bins**: Choose to use the same x-axis scales and bins for all graphs.

To panel graphs using multiple variables
1. In the graph dialog box, enter the columns of data for your graphs.
2. Click **Multiple Graphs**.
3. Under **Show (Pairs of) Graph Variables**, choose **In separate panels on the same graph**.
4. Under **Same Scales for Graphs**, check any available options to apply the same scales to all panels. Click **OK** in each dialog box.

To overlay graphs
1. In the graph dialog box, enter the columns of data for your graphs.
2. Click **Multiple Graphs**.
3. Under **Show (Pairs of) Graph Variables**, choose **Overlaid on the same graph**. Click **OK** in each dialog box.

Multiple Variables – Control Charts
... > Multiple Graphs > Multiple Variables
Use to control the placement and scales of multiple control charts created in the graph dialog box.

Dialog box items
Scales for Different Variables
- **Same Y**: Check to set the same y-scale for different variables.

To use multiple variables with control charts
1. In the graph dialog box, enter the columns of data for your graphs.
2. Click **Multiple Graphs**.
3. Under **Scales for Different Variables**, check or uncheck **Same Y**. Click **OK** in each dialog box.

Multiple Variables – Pie Charts
Graph > Pie Chart > Multiple Graphs > Multiple Variables
Use to control the placement of multiple pie charts created in the same graph dialog box. After creating a graph, you can:
- Change the variables used to create the graphs. See Make Similar Graph.
- Change the arrangement of the panels. See panel editing.

Dialog box items
Show Pie Charts from Different Variables
- **On the same graph**: Choose to place all pie charts created in the graph dialog box on the same page.
- **On separate graphs**: Choose to place each pie chart on a separate page.

To use multiple variables with pie charts
1. In the graph dialog box, enter the columns of data for your graphs.
2. Click **Multiple Graphs**.
3. Under **Show Pie Charts from Different Variables**, choose **On the same graph** or **On separate graphs**. Click **OK** in each dialog box.
Multiple Variables – Categorical Graphs

Use to control the placement and scales of multiple graphs created in the same graph dialog box. After creating a graph, you can:

- Change the variables used to create the graphs. See Make Similar Graph.
- Change the arrangement of the panels. See panel editing.
- Change the scales used on each axis. See Scale Editing Overview.

Dialog box items

Show Graph Variables Not available with all graphs.
- **In separate panels on the same graph:** Choose to display each graph in a separate section of the same page. See Paneling Graphs.
- **On separate graphs:** Choose to display each graph in its own graph window.

Same Scales for Graphs Available options depend on the graph.
- **Same Y:** Check to set the same y-scale for different variables.
- **Same number of data values per dot:** Check to use the same dot value for all graphs.
- **Same X, including same bins:** Check to set the same y-scale and bins for different variables.

To use multiple variables with categorical scales
1. In the graph dialog box, enter the columns of data for your graphs.
2. Click **Multiple Graphs**.
3. Under **Show Graph Variables**, choose **In separate panels on the same graph** or **On separate graphs**.
4. If you like, check any of the options under **Same Scales for Graphs**. Click **OK** in each dialog box.

Example of using multiple variables with categorical scales
Suppose you have conducted tests on the new and old formulations of a battery. You decide to create boxplots for two variables and, because you will use the same graph dialog box to create them, you panel the graphs to simplify comparison.
1. Open the worksheet BATTERIES.MTW.
2. Choose **Graph > Boxplot**.
3. Choose **One Y – With Groups** and click **OK**.
4. Under **Graph variables**, enter **Cycles FlashRecov**.
5. Under **Categorical variables for grouping**, enter **Formulation**.
6. Click **Multiple Graphs**.
7. Under **Show Graph Variables**, choose **In separate panels on the same graph**.
8. Click **OK** in each dialog box.
Customizing and Editing Graphs

Graph window output

By Variables

By Variables

... > Multiple Graphs > By Variables

Creates multiple graphs based on a type of grouping variable called a By variable, which divides the data into distinct graphs, either in separate panels or on separate pages. Separating a graph into panels is useful when the number of groups would make an overlaid graph difficult to read. After you create a graph, you can:

- Change the By variables used to create the graphs. See Make Similar Graph.
- Change the arrangement of the panels. See panel editing.

Dialog box items

By variables with groups in separate panels: Enter columns containing the By variables. Minitab displays a panel for each distinct combination of group values, all on the same graph.

By variables with groups on separate graphs: Enter columns containing the By variables. Minitab displays a panel for each distinct combination of group values, each in separate graph windows.

To graph By variables

1 In the graph dialog box, enter the graph variables.
2 Click Multiple Graphs, then click the By Variables tab.
3 Do one or both of the following:
 - In By variables with groups in separate panels, enter columns of data used to categorize and separate the graphing variables into separate panels on the same page.
 - In By variables with groups on separate graphs, enter columns of data used to categorize and separate the graphing variables into separate graph windows.
4 Click OK in each dialog box.

Example of a scatterplot with connect line

Your company manufactures frozen foods and you need to determine the optimal time and temperature for reheating a new frozen entree. You reheat samples at a number of different times and temperatures, then have trained judges rate each for overall quality on a scale of 0 (not enjoyable) – 10 (most enjoyable). Create paneled scatterplots with connect lines to examine the average quality scores for each temperature.

1 Open the worksheet REHEAT.MTW.
2 Choose Graph > Scatterplot.
3 Choose With Connect Line, then click OK.
4 Under Y variables, enter Quality. Under X variables, enter Time.
5 Click Multiple Graphs, then click the By Variables tab.
6. In **By variables with groups in separate panels**, enter **Temp**.
7. Click **OK** in each dialog box.

Graph window output

Interpreting the results

Paneling the graphs allows you view the effects of cooking time on quality separately for each temperature setting. Not surprisingly, optimal cooking times for lower temperatures (top panels) are longer than for higher temperatures (bottom panels). Reheating for too long at the highest temperatures reduces the quality of the product by burning or drying out the food. The optimal time-temperature combination appears to be about 425° for 34 minutes.

Additional examples that help visualize these data include:
- Scatterplot with connect lines and groups
- 3D scatterplot
- 3D surface plot
- 3D wireframe plot
- Contour plot

By Variables – Time Series Plots and Area Graphs

... > Multiple Graphs > By Variables

Use to create multiple graphs based on a type of grouping variable called a By variable, or to split the data into panels with equal numbers of observations. Minitab creates a graph for each distinct combination or values in the By variables columns and displays them on either separate panels on the same page, or in separate graph windows. After creating a graph, you can:
- Change the By variables used to create the graphs. See Make Similar Graph.
- Change the arrangement of the panels or the number of observations used to split panels. See panel editing.

Dialog box items

Arrangement

- **Use By variables to group data**: Choose to divide data into panels according to one or more By variables.
 - **By variables with groups in separate panels**: Enter columns of By variables, creating a panel for each distinct combination or values in the columns. All panels are displayed on the same page.
 - **By variables with groups on separate graphs**: Enter columns of By variables, creating a graph for each distinct combination or values in the columns. All graphs are displayed in separate graph windows.

- **Split data across panels**: Choose to divide the data into panels, each with an equal number of observations. All panels are displayed on the same page.

 - **Data per panel**: Enter the number of observations to put into each panel. If the number does not divide evenly into the total number of observations in the column, the final panel will include the remaining observations.
To split data across panels
1. In the graph dialog box, enter the columns of data for your graph.
2. Click Multiple Graphs, then click the By Variables tab.
4. Under Data per panel, type the number of data points to appear in each panel. Click OK in each dialog box.

Example of splitting data across panels
Suppose you want to examine trends in employment in the food industry in Wisconsin. You want to compare monthly employment data for five years.
1. Open the worksheet EMPLOY.MTW.
2. Choose Graph > Time Series Plot.
3. Choose Simple and click OK.
4. In Series, enter Food.
5. Click Time/Scale.
6. Under Time Scale, choose Calendar and choose Month Year.
7. Under Start Values, choose One set for all variables.
8. Under Month, enter 1. Under Year, enter 1997. Click OK.
9. Click Multiple Graphs, then click the By Variables tab.
10. Choose Split data across panels.
11. Under Data per panel, enter 12. Click OK in each dialog box.

Graph window output

Interpreting the results
Splitting the graph across panels makes it easy to compare the yearly trends in employment. Each year, employment in the food industry is slow in the winter months, balloons in the mid- to late-summer and early fall, then falls off again as winter approaches.
Paneling

Paneling Graphs

There are two ways to panel multiple graphs:

With the Multiple Variables tab, using multiple sets of graph variables, as in the example below. This is similar to using the Layout Tool, except you are limited to graphs created from a single dialog box.

With the By Variables tab, using a single set of graph variables subset by a By variable or paneling variable, as in the example below.

After creating a paneled graph, you can edit its characteristics. See panel editing. When created with the By Variables tab, a paneled graph has a number of default features that make it easier to understand.

Feature

With a By variable, panels use the same scales by default, and ticks are displayed on alternating sides of abutting panels for clarity.

A footnote names the paneling variable.
Labels give the value of the paneling variable in each panel. Here the labels (1 and 2) are enlarged.

To panel graphs using multiple variables
1. In the graph dialog box, enter the columns of data for your graphs.
2. Click **Multiple Graphs**.
3. Under **Show (Pairs of) Graph Variables**, choose **In separate panels on the same graph**.
4. Under **Same Scales for Graphs**, check any available options to apply the same scales to all panels. Click **OK** in each dialog box.

Example of paneling graphs
Suppose you want to plot both section and tread width against tire repairs. You want the plots to appear in the same graph, but in separate panels.
1. Open the worksheet TIRES.MTW.
2. Choose **Graph > Scatterplot**.
3. Choose **Simple** and click **OK**.
4. In row 1 of **Y**, enter **Repairs**. In row 1 of **X**, enter **SectionW**.
5. In row 2 of **Y**, enter **Repairs**. In row 2 of **X**, enter **TreadW**.
6. Click **Multiple Graphs**.
7. Under **Show Graphs of Different Variables**, choose **In separate panels on the same page**. Click **OK** in each dialog box.

Graph window output
Overlay

Overlaying Graphs

You can create a graph that overlays multiple graph variables (or pairs of variables, as in the scatterplot below) in the same data region. An overlaid graph contains:

- Joint scales that cover the full range of variables used on each axis.
- Distinct data displays for each variable in the graph.
- A legend that labels the symbols used in the graph.

Graphs with continuous scales use the Multiple Graphs button in the graph dialog box to display as an overlaid graph. Graphs with categorical scales use one of the Multiple gallery options to achieve a similar effect; variables share a common data scale, and the categorical scales share an axis.

In the case of overlaid scatterplots or time series graphs, you can add a secondary scale when two or more variables with dissimilar ranges share the same axis.

To overlay graphs
1. In the graph dialog box, enter the columns of data for your graphs.
2. Click Multiple Graphs.
3. Under Show (Pairs of) Graph Variables, choose Overlaid on the same graph. Click OK in each dialog box.

Example of multiple overlaid time series plots with groups

Your company uses two different processes to manufacture plastic pellets. Energy is a major cost, and you want to try a new source of energy. You use energy source A (your old source) for the first half of the month, and energy source B (your new source) for the second half. Create a time series plot to illustrate the energy costs of two processes from the two sources.

1. Open the worksheet ENERGYCOST.MTW.
2. Choose Graph > Time Series Plot or Stat > Time Series > Time Series Plot.
3. Choose Multiple with Groups, then click OK.
4. In Series, enter 'Process 1' and 'Process 2'.
5. In Categorical variables for grouping (1-3), enter 'Energy Source'.
6. Click Time/Scale.
7. Under Time Scale, choose Calendar, then choose Day Month.
8. For start values, under Day, type 1. Under Month, type 3.
9. Click OK in each dialog box.
Interpreting the results

Energy costs for Process 1 are generally greater than those for Process 2. In addition, costs for both processes were less using source B.

Therefore, using Process 2 and energy source B appears to be more cost effective than using Process 1 and energy source A.

Tip To see the y- and x-values for a symbol in a series, hover your cursor over the symbol.

Editing

Multiple Variables

Edit Panels – Arrangement

Select panel label > Editor > Edit Panels > Arrangement

Use to change the default panel arrangement and the margins separating the panels.

Dialog box items

- **Rows and Columns**
 - **Automatic**: Choose to accept the default panel arrangement.
 - **Custom**: Choose to change the panel arrangement.
 - **Rows**: Enter the number of rows in your custom panel layout.
 - **Columns**: Enter the number of columns in your custom panel layout.

- **Margins between panels**: Choose to adjust the space between the panels, then enter a value from 0 to 0.25 in figure units.

To edit panel arrangement

1. Select a panel label.
2. Choose Editor > Edit Panels, then click the Arrangement tab.
3. Under Rows and Columns, choose one of the following:
 - **Automatic** to accept the default panel arrangement.
 - **Custom** to change the default arrangement.
 - In **Rows**, enter the number of rows.
 - In **Columns**, enter the number of columns.
4. In **Margins between panels**, enter a value between 0 and 0.25 to adjust the space between the panels. Click **OK**.
Edit Panels – Options

... > Edit Panels > Options

Use to customize the placement of ticks on panels, as well as the source and amount of information included in panel labels.

Dialog box items

Alternate Ticks On Panels When Appropriate Not available with pie charts.
 Alternate panels: Choose to alternate the side on which ticks appear in adjoining panels.
 Don't alternate panels: Choose to place ticks on the same side in adjoining panels.

Source of Panel Labels The available items in this section depend on the active graph.
 Y variable name: Check to label the panels with y-scale variable names.
 X variable name: Check to label the panels with x-scale variable names.
 Graph variable name: Check to label the panels with the graph variable name.

Group Information
 Both variable names and levels: Choose to label the panels with both variable names and levels.
 Variable levels only: Choose to label the panels with variable levels only.
 None: Choose to hide variable names and levels in panel labels.

To edit panel options

1 Select a panel label.
2 Choose Editor > Edit Panels, then click the Options tab.
3 Under Alternate Ticks On Panels When Appropriate, choose Alternate panels or Don't alternate panels.
4 Under Sources of Panel Labels, check or uncheck Y variable name, X variable name, or Graph variable name to specify the source of the panel labels.
5 Under Group Information, choose Both variable names and levels, Variable levels only, or None to display the respective degree of panel label information. Click OK.

Edit Panels – Font

Select panel label > Editor > Edit Panels > Font

Use to change the panel label font or attributes.

Dialog box items

Font: Choose a font.

Style
 Bold: Check to make the text bold.
 Italic: Check to italicize the text.
 Underline: Check to underline the text.

Size: Enter a font size.

Color: Choose a text color.

Preview: Displays sample text with the selected attributes. This box does not accept input.

To edit panel font

1 Select a panel label.
2 Choose Editor > Edit Panels, then click the Font tab.
3 To change font attributes, do any of the following:
 • Under Font, type a font type or choose it from the list.
 • Under Style, check Bold, Italic, and/or Underline.
 • Under Size, type a font size or choose it from the list.
 • From Color, choose a text color.
4 Click OK.
Example of editing panel attributes
In the Example of paneling graphs, you created a simple paneled graph. You want to edit the paneling attributes of this graph.

Arrangement
Change the arrangement of the rows and columns.
1. Double-click a panel label.
2. Click the Arrangement tab.
3. Under Rows and Columns, choose Custom.
4. In Rows, enter 2, and in Columns, enter 1. Click OK.

Options
Alter the tick display and source of panel labels.
1. Double-click a panel label.
2. Click the Options tab.
3. Under Alternate Ticks on Panels When Appropriate, choose Don’t alternate panels. Click OK.

Font
Change the panel label font.
1. Double-click a panel label.
2. Click the Font tab.
3. Under Style, choose Bold.
4. Under Size, choose 14. Click OK.

Edit Panels – Panel
Select panel label > Editor > Edit Panels > Panels
Use to change the categorical variable that defines the panels, and to change the arrangement of panel.

Dialog box items
By variables with groups in separate panels: Enter the columns containing the paneling variables, creating a panel for each distinct combination of group values.

Graph Variables in Panel Arrangement Only available when a By variable is added to a graph already paneled with Multiple Variables.
- Graph variables vary slowest: Choose to arrange panels by graph variables when viewed left to right.
- Graph variables vary fastest: Choose to arrange panels by paneling variable when viewed left to right.

Paneling Method Only available with time series plots or area graphs.
Customizing Graphs

None: Choose to join the split panels.

Use By variables to group data: Choose to panel by variable values.

- **By variables with groups in separate panels:** Enter the columns containing the paneling variables, creating a panel for each distinct combination of group values.

Split data across panels: Choose to change the number of data points per panel.

Data per panel: Enter the number of data points per panel.

To edit paneling variables
1. Choose Editor > Panel or Edit Panels.
2. In By variables with groups in separate panels, enter a new paneling variable and click OK.

Example of editing paneling
In the Example of a scatterplot with connect line, you created a graph that was paneled with a certain By variable. You want to edit the graph to reflect paneling by a different variable.

1. Choose Editor > Edit Panels.
2. Under By variables with groups in separate panels, enter Operator. Click OK.

Graph window output

By Variables

Edit Panels — Arrangement

Select panel label > Editor > Edit Panels > Arrangement

Use to change the default panel arrangement and the margins separating the panels.

Dialog box items

Rows and Columns

- **Automatic:** Choose to accept the default panel arrangement.
- **Custom:** Choose to change the panel arrangement.

 - **Rows:** Enter the number of rows in your custom panel layout.

 - **Columns:** Enter the number of columns in your custom panel layout.

Margins between panels: Choose to adjust the space between the panels, then enter a value from 0 to 0.25 in figure units.

To edit panel arrangement
1. Select a panel label.
2. Choose Editor > Edit Panels, then click the Arrangement tab.
Customizing and Editing Graphs

3 Under **Rows and Columns**, choose one of the following:
 - **Automatic** to accept the default panel arrangement.
 - **Custom** to change the default arrangement.
 - In **Rows**, enter the number of rows.
 - In **Columns**, enter the number of columns.

4 In **Margins between panels**, enter a value between 0 and 0.25 to adjust the space between the panels. Click **OK**.

Edit Panels – Font

Select panel label > Editor > Edit Panels > Font

Use to change the panel label font or attributes.

Dialog box items

Font: Choose a font.

Style

- **Bold:** Check to make the text bold.
- **Italic:** Check to italicize the text.
- **Underline:** Check to underline the text.

Size: Enter a font size.

Color: Choose a text color.

Preview: Displays sample text with the selected attributes. This box does not accept input.

To edit panel font

1 Select a panel label.
2 Choose **Editor > Edit Panels**, then click the **Font** tab.
3 To change font attributes, do any of the following:
 - Under **Font**, type a font type or choose it from the list.
 - Under **Style**, check **Bold, Italic**, and/or **Underline**.
 - Under **Size**, type a font size or choose it from the list.
 - From **Color**, choose a text color.
4 Click **OK**.

Edit Panels – Options

... > Edit Panels > Options

Use to customize the placement of ticks on panels, as well as the source and amount of information included in panel labels.

Dialog box items

Alternate Ticks On Panels When Appropriate Not available with pie charts.

- **Alternate panels:** Choose to alternate the side on which ticks appear in adjoining panels.
- **Don’t alternate panels:** Choose to place ticks on the same side in adjoining panels.

Source of Panel Labels The available items in this section depend on the active graph.

- **Y variable name:** Check to label the panels with y-scale variable names.
- **X variable name:** Check to label the panels with x-scale variable names.
- **Graph variable name:** Check to label the panels with the graph variable name.

Group Information

- **Both variable names and levels:** Choose to label the panels with both variable names and levels.
- **Variable levels only:** Choose to label the panels with variable levels only.
- **None:** Choose to hide variable names and levels in panel labels.

To edit panel options

1 Select a panel label.
2 Choose Editor > Edit Panels, then click the Options tab.

3 Under Alternate Ticks On Panels When Appropriate, choose Alternate panels or Don't alternate panels.

4 Under Sources of Panel Labels, check or uncheck Y variable name, X variable name, or Graph variable name to specify the source of the panel labels.

5 Under Group Information, choose Both variable names and levels, Variable levels only, or None to display the respective degree of panel label information. Click OK.

Example of editing panel attributes
In the Example of paneling graphs, you created a simple paneled graph. You want to edit the paneling attributes of this graph.

Arrangement
Change the arrangement of the rows and columns.
1 Double-click a panel label.
2 Click the Arrangement tab.
3 Under Rows and Columns, choose Custom.
4 In Rows, enter 2, and in Columns, enter 1. Click OK.

Options
Alter the tick display and source of panel labels.
1 Double-click a panel label.
2 Click the Options tab.
3 Under Alternate Ticks on Panels When Appropriate, choose Don't alternate panels. Click OK.

Font
Change the panel label font.
1 Double-click a panel label.
2 Click the Font tab.
3 Under Style, choose Bold.
4 Under Size, choose 14. Click OK.

Edit Panels – Panel
Select panel label > Editor > Edit Panels > Panels
Use to change the categorical variable that defines the panels, and to change the arrangement of panel.
Customizing and Editing Graphs

Dialog box items

By variables with groups in separate panels: Enter the columns containing the paneling variables, creating a panel for each distinct combination of group values.

Graph Variables in Panel Arrangement Only available when a By variable is added to a graph already paneled with Multiple Variables.

- **Graph variables vary slowest:** Choose to arrange panels by graph variables when viewed left to right.
- **Graph variables vary fastest:** Choose to arrange panels by paneling variable when viewed left to right.

Paneling Method Only available with time series plots or area graphs.

- **None:** Choose to join the split panels.
- **Use By variables to group data:** Choose to panel by variable values.
 - **By variables with groups in separate panels:** Enter the columns containing the paneling variables, creating a panel for each distinct combination of group values.
- **Split data across panels:** Choose to change the number of data points per panel.
 - **Data per panel:** Enter the number of data points per panel.

To edit paneling variables

1. Choose Editor > Panel or Edit Panels.
2. In **By variables with groups in separate panels**, enter a new paneling variable and click **OK**.

Example of editing paneling

In the Example of a scatterplot with connect line, you created a graph that was paneled with a certain By variable. You want to edit the graph to reflect paneling by a different variable.

1. Choose Editor > Edit Panels.
2. Under **By variables with groups in separate panels**, enter Operator. Click **OK**.

Graph window output

![Scatterplot of Quality vs Time](image)

Panel variable: Operator

Paneling

Edit Panels – Arrangement

Choose panel label > **Editor > Edit Panels > Arrangement**

Use to change the default panel arrangement and the margins separating the panels.

Dialog box items

Rows and Columns

- **Automatic:** Choose to accept the default panel arrangement.
- **Custom:** Choose to change the panel arrangement.
Rows: Enter the number of rows in your custom panel layout.

Columns: Enter the number of columns in your custom panel layout.

Margins between panels: Choose to adjust the space between the panels, then enter a value from 0 to 0.25 in figure units.

To edit panel arrangement
1. Select a panel label.
2. Choose Editor > Edit Panels, then click the **Arrangement** tab.
3. Under **Rows and Columns**, choose one of the following:
 - **Automatic** to accept the default panel arrangement.
 - **Custom** to change the default arrangement.
 - In **Rows**, enter the number of rows.
 - In **Columns**, enter the number of columns.
4. In **Margins between panels**, enter a value between 0 and 0.25 to adjust the space between the panels. Click **OK**.

Edit Panels – Options

... > Edit Panels > Options

Use to customize the placement of ticks on panels, as well as the source and amount of information included in panel labels.

Dialog box items

Alternate Ticks On Panels When Appropriate Not available with pie charts.

- **Alternate panels:** Choose to alternate the side on which ticks appear in adjoining panels.
- **Don't alternate panels:** Choose to place ticks on the same side in adjoining panels.

Source of Panel Labels
The available items in this section depend on the active graph.

- **Y variable name:** Check to label the panels with y-scale variable names.
- **X variable name:** Check to label the panels with x-scale variable names.
- **Graph variable name:** Check to label the panels with the graph variable name.

Group Information

- **Both variable names and levels:** Choose to label the panels with both variable names and levels.
- **Variable levels only:** Choose to label the panels with variable levels only.
- **None:** Choose to hide variable names and levels in panel labels.

To edit panel options
1. Select a panel label.
2. Choose Editor > Edit Panels, then click the **Options** tab.
3. Under **Alternate Ticks On Panels When Appropriate**, choose **Alternate panels** or **Don't alternate panels**.
4. Under **Sources of Panel Labels**, check or uncheck **Y variable name**, **X variable name**, or **Graph variable name** to specify the source of the panel labels.
5. Under **Group Information**, choose **Both variable names and levels**, **Variable levels only**, or **None** to display the respective degree of panel label information. Click **OK**.

Edit Panels – Font

Select panel label > Editor > Edit Panels > Font

Use to change the panel label font or attributes.

Dialog box items

Font: Choose a font.

Style

- **Bold:** Check to make the text bold.
- **Italic:** Check to italicize the text.
- **Underline:** Check to underline the text.
Customizing and Editing Graphs

Size: Enter a font size.
Color: Choose a text color.
Preview: Displays sample text with the selected attributes. This box does not accept input.

To edit panel font
1. Select a panel label.
2. Choose Editor > Edit Panels, then click the Font tab.
3. To change font attributes, do any of the following:
 - Under Font, type a font type or choose it from the list.
 - Under Style, check Bold, Italic, and/or Underline.
 - Under Size, type a font size or choose it from the list.
 - From Color, choose a text color.
4. Click OK.

Example of editing panel attributes
In the Example of paneling graphs, you created a simple paneled graph. You want to edit the paneling attributes of this graph.

Arrangement
Change the arrangement of the rows and columns.
1. Double-click a panel label.
2. Click the Arrangement tab.
3. Under Rows and Columns, choose Custom.
4. In Rows, enter 2, and in Columns, enter 1. Click OK.

Options
Alter the tick display and source of panel labels.
1. Double-click a panel label.
2. Click the Options tab.
3. Under Alternate Ticks on Panels When Appropriate, choose Don’t alternate panels. Click OK.
Font
Change the panel label font.
1. Double-click a panel label.
2. Click the Font tab.
3. Under Style, choose Bold.
4. Under Size, choose 14. Click OK.

Edit Panels – Panel
Select panel label > Editor > Edit Panels > Panels
Use to change the categorical variable that defines the panels, and to change the arrangement of panel.

Dialog box items
By variables with groups in separate panels: Enter the columns containing the paneling variables, creating a panel for each distinct combination of group values.

Graph Variables in Panel Arrangement Only available when a By variable is added to a graph already paneled with Multiple Variables.

Graph variables vary slowest: Choose to arrange panels by graph variables when viewed left to right.

Graph variables vary fastest: Choose to arrange panels by paneling variable when viewed left to right.

Paneling Method Only available with time series plots or area graphs.

None: Choose to join the split panels.

Use By variables to group data: Choose to panel by variable values.

By variables with groups in separate panels: Enter the columns containing the paneling variables, creating a panel for each distinct combination of group values.

Split data across panels: Choose to change the number of data points per panel.

Data per panel: Enter the number of data points per panel.

To edit paneling variables
1. Choose Editor > Panel or Edit Panels.
2. In By variables with groups in separate panels, enter a new paneling variable and click OK.

Example of editing paneling
In the Example of a scatterplot with connect line, you created a graph that was paneled with a certain By variable. You want to edit the graph to reflect paneling by a different variable.
1. Choose Editor > Edit Panels.
2. Under By variables with groups in separate panels, enter Operator. Click OK.
Layout

Layout Tool

Editor > Layout Tool

Use to place multiple graphs of the same or different types on the same page. If worksheet data changes after you create a layout, you cannot update the layout to reflect the changes. After you create a layout, you can:

- Edit the individual graphs (see Example of adding annotation to a multigraph layout)

Dialog box items

Rows: Enter the number of rows for the layout.

Columns: Enter the number of columns for the layout.

Click to add or move highlighted graph from the list box to the highlighted cell of the layout.

Click to move highlighted graph from the layout to the list box.

Tip After you have created a layout, use the <Tab> key to cycle through and select each figure region and the graph region.

To create a layout

1. Create multiple graphs to include in the layout.
2. Choose Editor > Layout Tool.
3. In Rows, enter the number of rows for the layout.
4. In Columns, enter the number of columns for the layout.
5. To add graphs to the layout, click the cell where you want to place a graph and do one of the following:
 - In the list box, double-click a graph name.
 - In the list box, click a graph name and then click.
 - Double-click the image of the selected item below the list box.

Note You can click and drag the graphs to change their placement in the layout.

6. Click Finish.

Example of a two-graph layout

Suppose you want to create a bar chart and time series plot for a presentation. You want both graphs to appear on the same page, so you create the graphs and then use the layout tool.

Graph window output

![Scatterplot of Quality vs Time](image-url)
Step 1: Create the graphs
1. Open the worksheet NEWMARKET.MTW.
2. Choose Graph > Time Series Plot.
3. Choose Simple and then click OK.
4. In Series, enter SalesB. Click OK.
5. Choose Graph > Bar Chart.
6. Under Bars represent, choose Values from a table.
7. Under One column of values, choose Cluster and click OK.
8. In Graph Variables, enter SalesB.
9. In Categorical variable, enter Year. Click OK.

Step 2: Create the layout
1. Choose Editor > Layout Tool.
2. In Rows, enter 2.
3. In Columns, enter 1.
4. In the list box, double-click Time Series Plot of Sales. (Chart of Sales already appears in the layout.)
5. Click Finish.

Graph window output

Example of adding annotation to a multi-graph layout
In Example of a two-graph layout you created a layout for a presentation. You want to add a title that describe the entire page in addition to altering one of the individual graphs.

Tip After you have created a layout, press the [Tab] key to cycle through the selected figure regions. When adding items that are meant to annotate the entire layout rather than a specific graph, be sure that no single figure is selected.

1. Choose Editor > Add > Title.
2. In Text, enter Qualco Sales by Year and Quarter: 1991-1992 and click OK.
3. Double click any bar in the bar chart.
4. Under Fill Pattern, choose Custom.
5. From Background color, choose and click OK.
Graph window output

Qualco Sales by Year and Quarter: 1991-1992

Chart of Sales vs Year

Time Series Plot of Sales
Fitted Lines and Distributions

Data Fits Overview

You can add a line or curve to your graph to represent a theoretical distribution or to visualize general trends. Minitab provides three methods to model your data:

- **Distribution** - Fits a theoretical distribution, such as the normal distribution, to the data. You can provide historical estimates of the distribution parameters, or Minitab can estimate the parameters from the data.
- **Regression** - Fits a least-squares regression line to the data. You can fit linear, quadratic, or cubic models.
- **Smoother** - Fits a lowess curve to the data.

You can add a fitted line while creating a graph, or after the graph is created (see Adding Graph Elements). After creating a graph, you can change the line attributes and fit parameters (see Editing Data Fits Overview).

<table>
<thead>
<tr>
<th>Data Fit</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>Regression</td>
<td></td>
</tr>
<tr>
<td>Lowess Smoother</td>
<td></td>
</tr>
</tbody>
</table>

You can fit one of 14 distributions to your data to help you determine whether the data can be adequately modeled by the selected distribution.

You can use a regression fit to examine the relationship between the response variable (y) and the predictor variable (x).

You can use a lowess smoother to explore the relationship between two variables without fitting a specific model.
Customizing and Editing Graphs

<table>
<thead>
<tr>
<th>Graphs</th>
<th>Data Fits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scatterplot</td>
<td>●</td>
</tr>
<tr>
<td>Matrix Plot</td>
<td>●</td>
</tr>
<tr>
<td>Histogram</td>
<td>● ●</td>
</tr>
<tr>
<td>Probability Plot</td>
<td>●</td>
</tr>
<tr>
<td>Empirical CDF</td>
<td>●</td>
</tr>
<tr>
<td>Time Series Plot</td>
<td>●</td>
</tr>
</tbody>
</table>

Creation

Distribution Fit

Distribution – Distribution

Graph > Empirical CDF or Probability Plot > Distribution > Distribution

Use to fit a distribution to your data to help you determine whether the data can be adequately modeled by the selected distribution. To fit a distribution for a histogram, see *Data View - Distribution*.

After creating a graph, you can:

- Change the fitted distribution, add groups, and change the fitted line attributes (see *Editing Data Fits Overview*).
- Add a distribution fit (see *Adding Graph Elements*).

Dialog box items

Distribution: Choose a distribution.

Historical parameters: Enter historical estimates of the distribution parameters. Minitab displays the necessary parameters, which depend on the chosen distribution. These parameters may include **Mean**, **Standard Deviation**, **Location**, **Shape**, **Scale**, or **Threshold**. If you do not enter historical estimates, Minitab estimates the parameters from the data. You can enter some historical estimates and have Minitab estimate the other parameters. See *Distribution parameters for restrictions*.

To fit a distribution

1. Choose *Graph > Probability Plot* or *Empirical CDF > OK*.
2. Click **Distribution**.
3. From **Distribution**, choose a distribution.
4. In **Historical parameters**, enter historical estimates of the distribution parameters. Minitab displays the necessary parameters, which depend on the chosen distribution. These parameters may include **Mean**, **Standard Deviation**, **Location**, **Shape**, **Scale**, or **Threshold**. If you do not enter historical estimates, Minitab estimates the parameters from the data. You can enter some historical estimates and have Minitab estimate the other parameters. See *Distribution parameters for restrictions*.
5. Click **OK** in each dialog box.

Data View – Distribution

Graph > Histogram > Data View > Distribution

Use to fit a distribution to your histogram data to help you determine whether the data can be adequately modeled by the selected distribution. To fit a distribution for a probability plot or empirical cdf, see *Distribution - Distribution*.

After creating a graph, you can:

- Change the fitted distribution, add groups, and change the fitted line attributes (see *Editing Data Fits Overview*).
- Add a distribution fit (see *Adding Graph Elements*).

Dialog box items

Fit Distribution: Check to fit a distribution.

Distribution: Choose a distribution.

Historical parameters: Enter historical estimates of the distribution parameters. Minitab displays the necessary parameters, which depend on the chosen distribution. These parameters may include **Mean**, **Standard Deviation**,
Customizing Graphs

Location, Shape, Scale, or Threshold. If you do not enter historical estimates, Minitab estimates the parameters from the data. You can enter some historical estimates and have Minitab estimate the other parameters. See Distribution parameters for restrictions.

To fit a distribution (histogram)
1. In the graph dialog box, click **Data View**.
2. Click the **Distribution** tab.
3. Check **Fit distribution**.
4. From **Distribution**, choose a distribution.
5. In **Historical parameters**, enter historical estimates of the distribution parameters. Minitab displays the necessary parameters, which depend on the chosen distribution. These parameters may include **Mean**, **Standard Deviation**, **Location**, **Shape**, **Scale**, or **Threshold**. If you do not enter historical estimates, Minitab estimates the parameters from the data. You can enter some historical estimates and have Minitab estimate the other parameters. See Distribution parameters for restrictions.
6. Click **OK** in each dialog box.

Distribution parameters
To define a distribution, you need to enter the necessary parameters or have Minitab estimate them from the parameters. Use the table below to determine the necessary parameters and restrictions.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Parameters</th>
<th>Minitab can estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Mean and standard deviation</td>
<td>• mean and standard deviation</td>
</tr>
<tr>
<td>Lognormal</td>
<td>Smallest extreme value Location and scale</td>
<td>• location and scale</td>
</tr>
<tr>
<td></td>
<td>Largest extreme value Location and scale</td>
<td>• location, given scale</td>
</tr>
<tr>
<td>Logistic</td>
<td>Location and scale</td>
<td></td>
</tr>
<tr>
<td>Logistic</td>
<td>Logistic</td>
<td></td>
</tr>
<tr>
<td>Gamma</td>
<td>Weibull Location and scale</td>
<td>• location and scale</td>
</tr>
<tr>
<td></td>
<td>Exponential Mean</td>
<td>• location, given scale</td>
</tr>
<tr>
<td></td>
<td>Exponential Scale and threshold</td>
<td>• scale and threshold</td>
</tr>
<tr>
<td></td>
<td>Exponential Scale and threshold</td>
<td>• scale, given threshold</td>
</tr>
<tr>
<td>2-parameter</td>
<td>Exponential Mean</td>
<td>• mean</td>
</tr>
<tr>
<td>exponential</td>
<td>Scale and threshold</td>
<td>• scale and threshold</td>
</tr>
<tr>
<td></td>
<td>Scale and threshold</td>
<td>• scale, given threshold</td>
</tr>
<tr>
<td>3-parameter</td>
<td>3-parameter Weibull Shape and scale, and threshold</td>
<td>• shape, scale, and threshold</td>
</tr>
<tr>
<td>Weibull</td>
<td>3-parameter gamma</td>
<td>• shape, scale, given threshold</td>
</tr>
<tr>
<td></td>
<td>3-parameter gamma</td>
<td>• scale and threshold, given shape</td>
</tr>
<tr>
<td></td>
<td>3-parameter gamma</td>
<td>• scale, given shape and threshold</td>
</tr>
<tr>
<td></td>
<td>3-parameter lognormal Location, scale, and threshold</td>
<td>• location, scale, and threshold</td>
</tr>
<tr>
<td></td>
<td>3-parameter lognormal Location, scale, and threshold</td>
<td>• location and scale, given threshold</td>
</tr>
<tr>
<td></td>
<td>3-parameter lognormal Location, scale, and threshold</td>
<td>• location and threshold, given scale</td>
</tr>
<tr>
<td></td>
<td>3-parameter lognormal Location, scale, and threshold</td>
<td>• location, given scale and threshold</td>
</tr>
</tbody>
</table>

Example of a probability plot
You work for a textile manufacturer and want to assess the flammability of a new fabric. Testers hold randomly selected pieces of the fabric over an open flame for a fixed amount of time, and measure the length of the burned portion.
You typically use the 87th percentile as a benchmark for such tests. Create a probability plot to determine if a normal distribution fits your data and to estimate the 87th percentile for the population.
1. Open the worksheet FLAMERTD.MTW.
2. Choose **Graph > Probability Plot**.
3. Choose **Single**, then click **OK**.
4. In **Graph variables**, enter **Fabric**.
5. Click **Scale**, then click the **Percentile Lines** tab.
6 Under **Percentile Lines**, choose **At Y values**, and enter 87. Click **OK** in each dialog box.

Graph window output

![Probability Plot of Fabric](image)

Interpreting the results

A normal distribution with a mean of 3.573 and a standard deviation of 0.57 appears to fit your sample data fairly well:

- The plotted points form a reasonably straight line.
- The plotted points follow the fitted line fairly closely.
- The p-value for the Anderson-Darling test is above 0.10.

Because the distribution fits your data, you can use the fitted line to estimate percentiles for the population. The estimated 87th percentile for burn length is 4.215.

If you hover your mouse over the fitted line or confidence intervals, Minitab displays the fitted percentiles and associated confidence bounds for several points:

<table>
<thead>
<tr>
<th>Percent</th>
<th>Fabric</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.24721</td>
<td>1.68149</td>
<td>2.81293</td>
</tr>
<tr>
<td>2</td>
<td>2.40260</td>
<td>1.88162</td>
<td>2.92009</td>
</tr>
<tr>
<td>3</td>
<td>2.50119</td>
<td>2.01333</td>
<td>2.98906</td>
</tr>
<tr>
<td>4</td>
<td>2.57536</td>
<td>2.10917</td>
<td>3.04155</td>
</tr>
<tr>
<td>5</td>
<td>2.63569</td>
<td>2.18668</td>
<td>3.08470</td>
</tr>
<tr>
<td>6</td>
<td>2.68704</td>
<td>2.25230</td>
<td>3.12176</td>
</tr>
<tr>
<td>7</td>
<td>2.73206</td>
<td>2.30954</td>
<td>3.15459</td>
</tr>
<tr>
<td>8</td>
<td>2.77238</td>
<td>2.36054</td>
<td>3.18421</td>
</tr>
<tr>
<td>9</td>
<td>2.80904</td>
<td>2.40470</td>
<td>3.21139</td>
</tr>
<tr>
<td>10</td>
<td>2.84279</td>
<td>2.44898</td>
<td>3.23660</td>
</tr>
<tr>
<td>20</td>
<td>3.09357</td>
<td>2.75561</td>
<td>3.43153</td>
</tr>
<tr>
<td>30</td>
<td>3.27440</td>
<td>2.96577</td>
<td>3.58303</td>
</tr>
<tr>
<td>40</td>
<td>3.42891</td>
<td>3.13561</td>
<td>3.72222</td>
</tr>
<tr>
<td>50</td>
<td>3.57333</td>
<td>3.28486</td>
<td>3.86181</td>
</tr>
<tr>
<td>60</td>
<td>3.71775</td>
<td>3.42445</td>
<td>4.01106</td>
</tr>
<tr>
<td>70</td>
<td>3.87227</td>
<td>3.56364</td>
<td>4.18090</td>
</tr>
<tr>
<td>80</td>
<td>4.05310</td>
<td>3.71514</td>
<td>4.39105</td>
</tr>
<tr>
<td>90</td>
<td>4.21543</td>
<td>3.84295</td>
<td>4.58790</td>
</tr>
<tr>
<td>91</td>
<td>4.30388</td>
<td>3.91066</td>
<td>4.69769</td>
</tr>
<tr>
<td>92</td>
<td>4.37429</td>
<td>3.96245</td>
<td>4.78612</td>
</tr>
<tr>
<td>93</td>
<td>4.41460</td>
<td>3.99208</td>
<td>4.83712</td>
</tr>
<tr>
<td>94</td>
<td>4.45963</td>
<td>4.02489</td>
<td>4.89437</td>
</tr>
<tr>
<td>95</td>
<td>4.51098</td>
<td>4.06196</td>
<td>4.95999</td>
</tr>
<tr>
<td>96</td>
<td>4.57130</td>
<td>4.10511</td>
<td>5.03750</td>
</tr>
<tr>
<td>97</td>
<td>4.64547</td>
<td>4.15761</td>
<td>5.13334</td>
</tr>
<tr>
<td>98</td>
<td>4.74406</td>
<td>4.22658</td>
<td>5.26155</td>
</tr>
<tr>
<td>99</td>
<td>4.89946</td>
<td>4.33374</td>
<td>5.46518</td>
</tr>
</tbody>
</table>

You can be 95% confident that the 87th percentile for the population is between 3.84295 and 4.58790.
Customizing Graphs

Note: Minitab calculates point-wise confidence intervals, thus the 95% confidence level applies only to individual intervals. If you use two or more intervals to estimate parameters, your actual confidence level for the group of estimates will be less than 95%.

Example of multiple overlaid probability plots
You want to assess the efficacy of two coatings designed to reduce the flammability of fabrics. You randomly select 15 samples each of fabric with no coating, Coating A applied, and Coating B applied. Testers then hold each sample over an open flame for a fixed amount of time and measure the length of the burned portion.
You typically use the 87th percentile as a benchmark for such tests. Create probability plots for each treatment to determine if the data are fit well by normal distributions and to estimate the 87th percentile for each population.

1. Open the worksheet FLAMERTD.MTW.
2. Choose Graph > Probability Plot.
3. Choose Multiple, then click OK.
4. In Graph variables, enter Fabric - CoatingB.
5. Click Scale, then click the Percentile Lines tab.
6. Under Percentile Lines, choose At Y values, and enter 87.
7. Click the Gridlines tab, then uncheck all boxes. Click OK.
8. Click Distribution, then click the Data Display tab.
9. Uncheck Show confidence interval. Click OK in each dialog box.

Graph window output

Interpreting the results
The plotted points follow the fitted lines fairly closely, and the p-values for each Anderson-Darling test are greater than 0.10, suggesting that normal distributions fit these data fairly well. The estimated 87th percentiles for each population are:

- 4.21543 for the uncoated fabric
- 3.47944 for the fabric with Coating A
- 3.12936 for the fabric with Coating B

The order of variables in the output table is the same as that in the legend.
Coating A appears to reduce fabric burn, as evidenced by the leftward shift in the fitted line and the shorter mean burn length (3.013 as compared with 3.573 for the fabric with no coating). Coating A also appears to reduce the variability in the burn lengths, as evidenced by the steeper slope of the fitted line and the smaller standard deviation (0.4138 compared to 0.5700). However, appropriate tests would need to be conducted to confirm these observations.
Coating B may be more effective than Coating A. Coating B reduced the mean burn length to 2.727 and the standard deviation to 0.3575.
Example of an empirical cdf graph

You work for a textile manufacturer and want to assess the flammability of a new fabric. Testers hold randomly selected pieces of the fabric over an open flame for a fixed amount of time and measure the length of the burned portion.

You typically use the 87th percentile as a benchmark for such tests. Create an empirical cdf graph to determine if a normal distribution fits your data and to estimate the 87th percentile for the population.

1. Open the worksheet FLAMERTD.MTW.
2. Choose **Graph > Empirical CDF**.
3. Choose **Single**, then click **OK**.
4. In **Graph variables**, enter Fabric.
5. Click **Scale**, then click the **Percentile Lines** tab.
6. Under **Percentile Lines**, choose **At Y values**, and enter 87. Click **OK** in each dialog box.

Interpreting the results

A normal distribution with a mean of 3.573 and a standard deviation of 0.57 appears to fit your sample data fairly well. Because the distribution fits your data, you can use the fitted line to estimate percentiles for the population. The estimated 87th percentile for burn length is 4.215.

You may want to further evaluate the estimate by creating a probability plot, which includes:
- An Anderson-Darling statistic and p-value to help you verify whether the normal distribution fits your data
- Confidence intervals for estimated percentiles

Tip

If you hover your mouse over the top corner of a step, Minitab displays the row number and x- and y-values for the point. If you hover over the fitted line, the estimated percentiles for several points are displayed.

Example of multiple overlaid empirical cdf graphs

You want to assess the efficacy of two coatings designed to reduce the flammability of fabrics. You randomly select 15 samples each of fabric with no coating, Coating A applied, and Coating B applied. Testers then hold each sample over an open flame for a fixed amount of time and measure the length of the burned portion.

You typically use the 87th percentile as a benchmark for such tests. Create an empirical cdf graph to compare the fitted distributions for each treatment and estimate the 87th percentile for each population.

1. Open the worksheet FLAMERTD.MTW.
2. Choose **Graph > Empirical CDF**.
3. Choose **Multiple**, then click **OK**.
4. In **Graph variables**, enter Fabric - CoatingB.
5. Click **Scale**, then click the **Percentile Lines** tab.
6. Under **Percentile Lines**, choose **At Y values**, and enter 87. Click **OK**.
7. Click **OK** in each dialog box.
Interpreting the results

The stepped empirical cdf's follow the fitted lines fairly closely, suggesting that normal distributions fit these data fairly well. The estimated 87th percentiles for each population are:

- 4.215 for the uncoated fabric
- 3.479 for the fabric with Coating A
- 3.129 for the fabric with Coating B

The order of variables in the output table is the same as that in the legend.

Coating A appears to reduce fabric burn, as evidenced by the leftward shift in the fitted line and the shorter mean burn length (3.013 as compared with 3.573 for the fabric with no coating). Coating A also appears to reduce the variability in the burn lengths, as evidenced by the steeper slope of the fitted line and the smaller standard deviation (0.4138 compared to 0.5700). However, appropriate tests would need to be conducted to confirm these observations.

Coating B may be more effective than Coating A. Coating B reduced the mean burn length to 2.727 and the standard deviation to 0.3575.

Example of distribution fit (histogram)

In the Example of a simple histogram, you determine the amount of torque required to remove shampoo bottle caps. You want to fit a normal distribution to the data.

Note: You can also fit a distribution by choosing a With Fit option from the histogram gallery.

Distribution

1. Open the worksheet CAP.MTW.
2. Choose Graph > Histogram.
3. Choose Simple, then click OK.
4. In Variables, enter Torque.
5. Click Data View.
6. Click the Distribution tab.
7. Check Fit Distribution.
8. Click OK in each dialog box.
Lowess Fit

Data View – Smoother

... > Data View > Smoother

Use to fit a lowess smoother to a scatterplot, matrix plot, histogram, or time series plot. You can use a lowess smoother to explore the relationship between two variables without fitting a specific model. After creating a graph, you can:

- Change the lowess smoothing parameters, add groups, and change the fitted line attributes (see Editing Data Fits Overview).
- Add a lowess smoother (see Adding Graph Elements).

Dialog box items

Smoother

None: Choose to suppress the lowess smoother.

Lowess: Choose to display the lowess smoother.

Degree of smoothing: Enter a number between 0 and 1 for the fraction (f) of the total number of points used to calculate the fitted values at each x-value. The default is 0.5. See Specifying lowess smoothing parameters.

Number of steps: Enter a number from 0 to 10 to specify the number of iterations of smoothing used to limit the influence of outliers. Each step reduces the weight given to outliers in the next iteration. The default is 2. See Specifying lowess smoothing parameters.

To fit a lowess smoother

1. In the graph dialog box, click Data View.
2. Click the Smoother tab.
3. Under Lowess Smoothing Parameters, choose Lowess. If you like, do one or both of the following:
 - In Degree of smoothing, enter a number between 0 and 1 for the fraction (f) of the total number of points to use to calculate the fitted values at each x-value. The default is 0.5. See Specifying lowess smoothing parameters.
 - In Number of steps, enter a number from 0 to 10 to specify the number of iterations of smoothing used to limit the influence of outliers. Each step reduces the weight given to outliers in the next iteration. The default is 2.
 See Specifying Lowess Smoothing Parameters for details.
4. Click OK in each dialog box.

Method – Lowess

The lowess routine calculates a new, smoothed y-value for each x-value.

1. The routine selects a fraction (default f = 0.5) of all points, using the data closest in x-value on either side of the (x,y) point. The selection often results in more points selected from one side of the x-value than the other. The example below shows the fraction of data selected for a given point:

![Diagram showing the selection process for a lowess smoother.]

2. Minitab calculates weights using the x-distance between each point in the selected fraction and the point to be smoothed:

 \[
 \text{weight} = \left[1 - \left(\frac{\text{distance from the selected point}}{\text{max distance between selected point and the } (f\times) \text{ points}} \right) \right]^3
 \]
This equation produces weights for the fraction of selected points that have the following relationship:

\[\text{weight} = \left[1 - \left(\frac{\text{|residual for the point from previous step|}}{6 \times \text{median of all |residuals| from previous step}} \right)^2 \right]^2 \]

Points closest to each x-value have the greatest weight in the smoothing.

3 Minitab performs a weighted linear regression on all points in the selected fraction of the data, using the weights from step 2 to produce an initial smoothed value.

4 Finally, the Minitab limits the influence of outliers on the results by using further iterations (default n = 2) of step 3 (called "robust steps"), with new weights calculated as follows:

Specifying Lowess Smoothing Parameters

You can specify two parameters to define the lowess smoother:

- **Degree of smoothing**: A lowess smoother generally works best when the fraction (f) of points is large enough to give a smooth fit without distorting the underlying relationship between the variables. Cleveland [2] suggests that you make f as large as possible, but maintain unrelatedness in a separate lowess plot of the y-value residuals versus the x-values.

- **Number of steps**: To limit the influence of outliers on the smoothed y-values, you can set the number of iterations of smoothing. Each step reduces the weights given to outliers in the next iteration of weighted linear regression, based on the size of residuals in the previous lowess step. For more details, refer to step 4 of the lowess method. When you set the number of steps to 0, step 4 of the lowess method is eliminated entirely. Cleveland [2] suggests that two robust steps adequately smooth outlier effects for most data.

References for Lowess Smoother

Example of lowess smoother (scatterplot)

In the Example of a simple scatterplot, you examine the relationship between voltage remaining in your batteries immediately after a flash and the length of time required for a battery to support another flash. You want to fit a lowess line.

Note Similar lowess smoother functions are available for matrix plots and time series plots.
1. Open the worksheet BATTERIES.MTW.
2. Choose **Graph > Scatterplot**.
3. Choose **Simple**, then click **OK**.
5. Click **Data View**.
6. Click the **Smoker** tab.
7. Under **Smoker**, choose **Lowess**.
8. Click **OK** in each dialog box.

Example of lowess smoother (histogram)

In the Example of a simple histogram, you determine the amount of torque required to remove shampoo bottle caps. You want to fit a lowess smoother to the data.

Lowess smoother
1. Open the worksheet CAP.MTW.
2. Choose **Graph > Histogram**.
3. Choose **Simple**, then click **OK**.
4. In **Graph variables**, enter *Torque*.
5. Click **Scale**.
6. Under **Y Scale Low** and **X Scale Low**, check **Minor ticks**. Click **OK**.
7. Click **Data View**.
8. Click the **Smoker** tab.
9. Under **Smoker**, choose **Lowess**.
10. Click **OK** in each dialog box.

Regression Line

Data View – Regression

Graph > Scatterplot or Matrix Plot > Data View > Regression

Use to fit a least squares regression line to a scatterplot or matrix plot. Use the regression fit to examine the relationship between the response variable (y) and the predictor variable (x). If you hover the mouse pointer over the fitted line, Minitab displays the fitted regression equation. After creating a graph, you can:

- Change the model order for the regression fit, add groups, or change the fitted line attributes (see Editing Data Fits Overview).
- Add a regression fit (see Adding Graph Elements).

Dialog box items

Model Order

- **None**: Choose to suppress the regression fit.
- **Linear**: Choose to fit a linear model.
- **Quadratic**: Choose to fit a quadratic model.
- **Cubic**: Choose to fit a cubic model.

Fit intercept: Check to fit a constant term (the y-intercept of the regression line). Uncheck to fit the model without a constant term.

To fit a regression line

1. In the graph dialog box, click **Data View**.
2. Click the **Regression** tab.
3 Under Model Order, choose Linear, Quadratic, or Cubic, based on the model you want to fit.
4 Check or uncheck Fit intercept, to include or exclude the intercept (constant) in the model. If you uncheck Fit intercept, the regression line passes through the origin (x = 0, y = 0)
5 Click OK in each dialog box.

Example of regression fit
In the Example of a simple scatterplot, you examine the relationship between voltage remaining in your batteries immediately after a flash and the length of time required for a battery to be ready to support another flash. You want to fit a regression line.

Note You can also fit a regression line by choosing a With Fit option from the histogram gallery.

1 Open the worksheet BATTERIES.MTW.
2 Choose Graph > Scatterplot.
3 Choose Simple, then click OK.
4 Under Y variables, enter FlashRecov. Under X variables, enter VoltsAfter.
5 Click Data View.
6 Click the Regression tab.
7 Choose Linear.
8 Click OK in each dialog box.

Editing
Editing Data Fits Overview
You can add a line or curve to your graph to represent a theoretical distribution or to visualize general trends. Minitab provides three methods to model your data:

- Distribution – Fits a theoretical distribution, such as the normal distribution, to the data. You can provide historical estimates of the distribution parameters, or Minitab can estimate the parameters from the data.
- Regression – Fits a least-squares regression line to the data. You can fit linear, quadratic, or cubic models.
- Smoother – Fits a lowess curve to the data.

You can add a fitted line while creating a graph, or after the graph is created (see Adding Graph Elements). After creating a graph, you can change the line attributes and fit parameters (see Editing Data Fits Overview).

Data fit To change...

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Line type, color, or size - see Edit Distribution Fit - Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grouping variables - see Edit Distribution Fit - Groups</td>
</tr>
<tr>
<td></td>
<td>Distribution type or historical parameters - see Edit Distribution Fit - Options</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regression</th>
<th>Line type, color, or size - see Edit Regress Fit - Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grouping variable - see Edit Regression Fit - Groups</td>
</tr>
<tr>
<td></td>
<td>Model order or fit of the intercept - see Edit Regression Fit - Options</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lowess</th>
<th>Line type, color, or size - see Edit Lowess Smoother - Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grouping variable - see Edit Lowess Smoother - Groups</td>
</tr>
<tr>
<td></td>
<td>Smoothing parameters - see Edit Lowess Smoother - Options</td>
</tr>
</tbody>
</table>
Edit Distribution Fit

Edit Distribution Fit – Attributes

Select distribution fit > Editor > Edit Distribution Fit > Attributes

Use to change the attributes of the fitted line on a probability plot, empirical cdf, or histogram. To add a distribution fit to a histogram, choose Editor > Add > Distribution Fit.

Dialog box items

Lines

- **Automatic**: Choose to accept the default line attributes.
- **Custom**: Choose to customize the line attributes.
 - **Type**: Choose a line type.
 - **Color**: Choose a line color.
 - **Size**: Choose a line width.

To change the line attributes

1. Select and double-click one or more fitted lines. See Selecting groups and single items.
2. Under Lines, choose one of the following:
 - **Automatic** to accept the default line attributes.
 - **Custom** to customize the line attributes.
 - From **Type**, choose a line type.
 - From **Color**, choose a line color.
 - From **Size**, choose a line width.
3. Click OK.

Edit Distribution Fit – Groups

Select distribution fit > Editor > Edit Distribution Fit > Groups

Use to add, remove, or change the grouping variables on a probability plot, empirical cdf, or histogram. To add a distribution fit to a histogram, choose Editor > Add > Distribution Fit.

Dialog box items

Categorical variables for grouping: Enter up to three columns of grouping variables to fit a separate distribution for each group and display a legend.

To add or change the grouping variables

1. Select and double-click all fitted lines. See Selecting groups and single items.
2. Click the Groups tab.
3. In **Categorical variables for grouping**, enter up to three columns containing grouping variables to fit a line for each group and display a legend.
4. To update all data displays to use the same grouping variables, check **Apply same grouping to other data displays**. (Not available with distribution fits.)
5. Click OK.

Edit Distribution Fit – Options

Select distribution fit > Editor > Edit Distribution Fit > Options

Use to change the distribution and the historical parameter estimates used to fit your data on a probability plot, empirical cdf, or histogram. To add a distribution fit to a histogram, choose Editor > Add > Distribution Fit.

Dialog box items

Distribution: Choose a distribution.

Historical parameters: Enter the parameters for the chosen distribution. Minitab displays the necessary parameters, which depend on the chosen distribution. These parameters may include **Mean**, **Standard Deviation**, **Location**, **Shape**, **Scale**, or **Threshold**. If you do not enter historical estimates, Minitab estimates the parameters from the data. You can enter some historical estimates and have Minitab estimate the other parameters. See Distribution parameters for restrictions.
Show confidence interval: Check to display the confidence interval for the fitted distribution (probability plot only).

Confidence level: Type a number between 0 and 100 to specify the confidence level. The default is 95%.

To change the distribution or enter historical parameters
1. Double-click the distribution line.
2. Click the Options tab.
3. From Distribution, choose a distribution.
4. In Historical parameters, enter the parameters for the chosen distribution. Minitab displays the necessary parameters, which depend on the chosen distribution. These parameters may include Mean, Standard Deviation, Location, Shape, Scale, or Threshold. If you do not enter historical estimates, Minitab estimates the parameters from the data. You can enter some historical estimates and have Minitab estimate the other parameters. See Distribution parameters for restrictions.
5. (Probability plot only) To display a confidence interval for the fitted distribution, check Show confidence interval. If you want a confidence level other than 95%, type a value from 0 to 100 in Confidence level.
6. Click OK.

Examples of editing a distribution fit
In the Example of a probability plot, you assess the flammability of a new fabric. You want to modify the distribution fit.

Distribution fit
1. Open the worksheet FLAMERTD.MTW.
2. Choose Graph > Probability Plot.
3. Choose Single, then click OK.
4. In Graph Variables, enter Fabric1, then click OK.

Attributes
Change line color, line type, and line width.
1. Double-click the distribution line.
2. Under Lines, choose Custom.
3. From Type, choose
4. From Color, choose .
5. From Size, choose 2, then click OK.
Options and groups
Hide the confidence intervals and add a grouping variable.
1. Double-click the distribution line.
3. Click the Options tab.
4. Uncheck Show confidence interval.
5. Click the Groups tab.
6. In Categorical variables for grouping variables, enter Coating.
7. Click OK.

Edit Lowess Fit

Edit Lowess Smoother – Attributes
Select lowess smoother > Editor > Edit Lowess Smoother > Attributes
Use to change the attributes of the fitted line on a scatterplot, matrix plot, histogram, or time series plot. To add a lowess smoother to a graph, choose Editor > Add > Smoother.

Dialog box items
Lines
 Automatic: Choose to accept the default line attributes.
 Custom: Choose to customize the line attributes.
 Type: Choose a line type.
 Color: Choose a line color.
 Size: Choose a line width.

To change the line attributes
1. Select and double-click one or more fitted lines. See Selecting groups and single items.
2. Under Lines, choose one of the following:
 • Automatic to accept the default line attributes.
 • Custom to customize the line attributes.
 – From Type, choose a line type.
 – From Color, choose a line color.
 – From Size, choose a line width.
3. Click OK.

Edit Lowess Smoother – Groups
Select lowess smoother > Editor > Edit Lowess Smoother > Groups
Use to add, remove, or change the grouping variables on a scatterplot, matrix plot, histogram, or time series plot. To add a lowess smoother to a graph, choose Editor > Add > Smoother.

Dialog box items
Categorical variables for grouping: Enter up to three columns of grouping variables to fit a separate lowess line for each group and display a legend.
Apply same grouping to other data displays: Check to update all data displays to use the same grouping variables as the fitted line. (Available for scatterplots, matrix plots, and time series plots. For histograms, Minitab automatically assigns the grouping variable to all data displays.)

To add or change the grouping variables
1. Select and double-click all fitted lines. See Selecting groups and single items.
2. Click the Groups tab.
3 In **Categorical variables for grouping**, enter up to three columns containing grouping variables to fit a line for each group and display a legend.

4 To update all data displays to use the same grouping variables, check **Apply same grouping to other data displays**. (Not available with distribution fits.)

5 Click **OK**.

Edit Lowess Smoother – Options

Select lowess smoother > Editor > Edit Lowess Smoother > Options

Use to change the smoothing parameters on a scatterplot, matrix plot, histogram, or time series plot. To add a lowess smoother to a graph, choose **Editor > Add > Smoother**.

Dialog box items

Lowess Smoothing Parameters

- **Degree of smoothing**: Enter a number between 0 and 1 for the fraction (f) of the total number of points to use to calculate the fitted values at each x-value. The default is 0.5. See Specifying lowess smoothing parameters.
- **Number of steps**: Enter a number from 0 to 10 to specify the number of iterations of smoothing used to limit the influence of outliers. Each step reduces the weight given to outliers in the next iteration. The default is 2. See Specifying lowess smoother parameters.

To change the lowess smoothing parameters

1 Double-click the lowess smoother.
2 Click the **Options** tab.
3 Under **Lowess Smoothing Parameters**, do one or more of the following:
 - In **Degree of smoothing**, enter a number between 0 and 1 for the fraction (f) of the total number of points to use to calculate the fitted values at each x-value. The default is 0.5. See Specifying lowess smoothing parameters.
 - In **Number of steps**, enter a number from 0 to 10 to specify the number of iterations of smoothing used to limit the influence of outliers. Each step reduces the weight given to outliers in the next iteration. The default is 2. See Specifying lowess smoother parameters.
4 Click **OK**.

Examples of editing a lowess smoother

In the Example of a simple scatterplot, you examine the relationship between voltage remaining in your batteries immediately after a flash and the length of time required for a battery to support another flash. You want to modify the lowess smoother.

Lowess smoother

1 Open the worksheet BATTERIES.MTW.
2 Choose **Graph > Scatterplot**.
3 Choose **Simple**, then click **OK**.
5 Click **Data View**.
6 Click the **Smother** tab.
7 Under **Smother**, choose **Lowess**.
8 Click **OK** in each dialog box.
Attributes
Change line type, line color, and line width.
1. Double-click the lowess smoother.
2. Under Lines, choose Custom.
 - From Type, choose
 - From Color, choose
 - From Size, choose 3.
3. Click OK.

Options and groups
Change the smoothing parameters and add a grouping variable.
1. Double-click the lowess smoother.
3. Click the Options tab.
4. In Degree of smoothing, enter 0.75.
5. Click the Groups tab.
6. In Categorical variables for grouping, enter Formulation.
7. Check Apply same grouping to other data displays.
8. Click OK.

Edit Regression Line

Edit Regression Fit – Attributes
Select regression fit > Editor > Edit Regression Fit > Attributes
Use to change the attributes of the fitted line on a scatterplot or matrix plot. To add a regression fit to a graph, choose Editor > Add > Regression Fit.

Dialog box items

Lines
 - Automatic: Choose to accept the default line attributes.
 - Custom: Choose to customize the line attributes.
 - Type: Choose a line type.
 - Color: Choose a line color.
 - Size: Choose a line width.

To change the line attributes
1. Select and double-click one or more fitted lines. See Selecting groups and single items.
2. Under Lines, choose one of the following:
 - Automatic to accept the default line attributes.
 - Custom to customize the line attributes.
 - From Type, choose a line type.
 - From Color, choose a line color.
 - From Size, choose a line width.
3. Click OK.
Customizing Graphs

Edit Regression Fit – Groups

Select regression fit > Editor > Edit Regression Fit > Groups

Use to add, remove, or change the grouping variables on a scatterplot or matrix plot. To add a regression line to a graph, choose Editor > Add > Regression Fit.

Dialog box items

Categorical variables for grouping: Enter up to three columns of grouping variables to fit a separate regression line for each group and display a legend.

Apply same grouping to other data displays: Check to update all data displays to use the same grouping variables as the fitted line.

To add or change the grouping variables

1. Select and double-click all fitted lines. See Selecting groups and single items.
2. Click the Groups tab.
3. In Categorical variables for grouping, enter up to three columns containing grouping variables to fit a line for each group and display a legend.
4. To update all data displays to use the same grouping variables, check Apply same grouping to other data displays.
 (Not available with distribution fits.)
5. Click OK.

Edit Regression Fit – Options

Select regression line > Editor > Edit Regression Fit > Options

Use to change the regression model on a scatterplot or matrix plot. To add a regression fit to a graph, choose Editor > Add > Regression Fit.

Dialog box items

Model Order

- Linear: Choose to fit a linear model.
- Quadratic: Choose to fit a quadratic model.
- Cubic: Choose to fit a cubic model.

Fit intercept: Check to fit a constant term (the y-intercept of the regression line). Uncheck to fit the model without a constant term.

To change the regression model

1. Double-click the regression fit.
2. Click the Options tab.
3. Choose Linear, Quadratic, or Cubic, based on the model you want to fit.
4. Check or uncheck Fit intercept to include or exclude the intercept (also called the constant) in the model.
5. Click OK.

Examples of editing a regression fit

In the Example of a simple scatterplot, you examine the relationship between voltage remaining in your batteries immediately after a flash and the length of time required for a battery to support another flash. You want to modify the regression fit.
Regression
1. Open the worksheet BATTERIES.MTW.
2. Choose Graph > Scatterplot.
3. Choose Simple, then click OK.
5. Click Data View.
6. Click the Regression tab.
7. Under Model Order, choose Linear.
8. Click OK in each dialog box.

Attributes
Change line color, line type, and line width.
1. Double-click the regression fit.
2. Under Lines, choose Custom.
 - From Type, choose .
 - From Color, choose [black].
 - From Size, choose 2.
3. Click OK.

Options and groups
Change the model order and add a grouping variable.
1. Double-click the regression fit.
3. Click the Options tab.
5. Click the Groups tab.
6. In Categorical variables for grouping, enter Formulation.
7. Check Apply same grouping to other data displays.
8. Click OK.
Subset Data, Missing Values, and Frequency Data

Data Options Overview

Use data options to focus the scope and handling of the data when creating a graph. You can:

- Subset the data to focus your analysis. See Subset.
- Include or exclude empty cells or groups in your analysis. See Group Options.
- Use a frequency column when creating most graphs. See Frequency.

How you organize worksheet data can affect the ease with which you use these options. See Organizing Your Data.

<table>
<thead>
<tr>
<th>Graph</th>
<th>Subset</th>
<th>Group Options</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scatterplot</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Matrix Plot</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Marginal Plot</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Histogram</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Dotplot</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Boxplot</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Stem-and-Leaf Plot</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Empirical CDF</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Interval Plot</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Individual Value Plot</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Bar Chart</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Pie Chart</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Time Series Plot</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Area Graph</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Contour Plot</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D Scatterplot</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>3D Surface Plot</td>
<td>●</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subset

... > Data Options > Subset

Use to include or exclude rows when creating a graph.

Dialog box items

Include or Exclude

- **Specify which rows to include**: Choose to set conditions for including rows.
- **Specify which rows to exclude**: Choose to set conditions for excluding rows.

Specify Which Rows to Include/Exclude

- **All rows**: Choose to include/exclude all rows.
- **Rows that match**: Choose to include/exclude rows matching specified conditions. Click **Condition** to enter the conditional expression.
- **Brushed rows**: Choose to include/exclude all brushed rows.
Row numbers: Choose to include/exclude based on row numbers. Enter the row numbers in the text box. Use a colon (:) to denote an inclusive range. For example, enter 1 4 6:10 to signify the rows 1,4,6,7,8,9,10.

To subset graph data
1. In the data source dialog box, click Data Options.
2. Click the Subset tab.
3. Under Specify Which Rows To Include/Exclude, choose one of the following:
 - Specify which rows to include to base your subset on included rows.
 - Specify which rows to exclude to base your subset on excluded rows.
4. Click OK.

Subset – Area Graphs, Time Series Plots, and Control Charts
... > Data Options > Subset
Use to include or exclude rows when creating a graph.

Dialog box items
Include or Exclude
 - Specify which rows to include: Choose to set conditions for including rows.
 - Specify which rows to exclude: Choose to set conditions for excluding rows.
Specify Which Rows to Include/Exclude
 - All rows: Choose to include/exclude all rows.
 - Rows that match and click Condition to enter a condition to be met by included or excluded rows.
 - Brushed rows to include or exclude brushed rows.
 - Row numbers: Choose to include/exclude based on row numbers. Enter the row numbers in the text box. Use a colon (:) to denote an inclusive range. For example, enter 1 4 6:10 to signify the rows 1,4,6,7,8,9,10.

Leave gaps for excluded points: Check to leave a space in the graph for the points you exclude.

To leave a gap for excluded points
1. In the data source dialog box, click Data Options.
2. Click the Subset tab.
3. Under Specify or Exclude, choose Specify which rows to exclude.
4. Under Specify Which Rows To Exclude, choose one of the following:
 - No rows to exclude all rows.
 - Rows that match and click Condition to enter a condition to be met by excluded rows.
 - Brushed rows to exclude brushed rows.
 - Row numbers and enter specific rows numbers to be excluded. Use a colon (:) to denote an inclusive range. For example, enter 1 4 6:10 to signify the rows 1,4,6,7,8,9,10.
5. Check Leave gaps for excluded points.
6. Click OK.

Example of leaving gaps for excluded points
You have been monitoring camshaft lengths to meet engineering specifications. The operator taking measurements indicated that "something was wrong" with the gage for the 8th subgroup (subgroup size is 5). You decide to investigate and exclude this subgroup from the control chart. You want to show a gap on the chart, so the chart is not misleading.
1. Open the worksheet CAMSHAFT.MTW.
2 Choose **Stat > Control Charts > Variables Charts for Subgroups > Xbar**.
3 Choose **All observations for a chart are in one column**, then enter **Length**.
4 In **Subgroup sizes**, type 5.
5 Click **Data Options**.
6 Under **Include or Exclude**, choose **Specify which rows to exclude**.
7 Under **Specify Which Rows To Exclude**, choose **Row numbers**.
8 Type 36:40 to signify the rows 36-40.
9 Check **Leave gaps for excluded points**.
10 Click **OK** in each dialog box.

Graph window output

![Xbar Chart of Length](image)

Interpreting the results

Leaving a gap for the excluded points makes it easy to indicate that the data in subgroup 8 could be suspect.

Group Options

... > **Data Options > Group Options**

Use to include or exclude unrepresented groups and observations with missing group values when creating a graph. See **Using Group Options**.

Dialog box items

- **Include missing as a group**: Uncheck to exclude observations with missing group values.
- **Include empty cells**: Uncheck to exclude a group level not represented by the combination of two or more grouping variables.

To use group options

1 In the data source dialog box, click **Data Options**.
2 Click the **Group Options** tab.
3 Check **Include missing as a group** to include observations with missing group values. Resulting graphs include the observations and leave the missing grouping variable label blank.
4 Check **Include empty cells** to include group level not represented by the combination of two or more grouping variables. Resulting graphs include empty placeholders for these levels.
5 Click **OK**.

Using Group Options

You might find it helpful to use group options to show or hide missing groups or empty cells when creating a graph.
In the worksheet at right, the two grouping variables Style and Size each cycle through three values.

However, not all logical combinations are represented. The group Hooded/Large does not appear here. This combination is considered an "empty cell." Also, one row pairs a missing value in the column Style with "Small" in the Size column. This pairing is considered a "missing group."

Use the Group Options tab in Data Options to control how these items are graphed.

If you uncheck both Include missing as a group and Include empty cells, Minitab excludes the group Hooded/Large and the group created by a missing value and "Small."

You might exclude "empty cells" simply to save space on your graph, or to show that the group does not exist.

You might exclude "missing groups" if you do not want to graph items with indeterminate group values.

If you check only Include missing as a group, Minitab includes a bar for the "missing group" formed by an empty cell and the value "Small."

If you check only Include empty cells, Minitab includes an empty placeholder for the group Hooded/Large.
If you check both Include missing as a group and Include empty cells (the defaults), Minitab includes both empty cell and missing groups from the earlier examples, as well as the empty cells created by their combination (a missing value with "Medium" and a missing value with "Large"). When used in the context of paneling, these options have a similar effect on the number of panels created.

Frequency

... > Data Options > Frequency

Use to include a frequency column. You can designate a different frequency column for each graph created in the graph dialog box. For more information on organizing data with a frequency column, see Organizing Your Data. After you create a graph, you can change the frequency variable. See Make Similar Graph.

Dialog box items

Frequency variable(s): Enter the column(s) containing frequency data. Frequency variables are used in the order they are entered. Be sure they match the entry order of the corresponding graphs in the graph dialog box.

Note When using a frequency column, Jitter does not reveal overlapping points. Frequency values are included in calculations for regression and smoother lines.

To use a frequency column

1. In the graph dialog box, click Data Options.
2. Click the Frequency tab.
3. In Frequency column, enter the column(s) containing frequency data. Frequency variables are used in the order they are entered. Be sure they match the entry order of their corresponding graphs in the data source dialog box.
4. Click OK.

Organizing Your Data

How you use the graph commands (and to some extent the output) depends upon how the data are organized. However, the simplest way to use data may not always be the simplest way to collect it. You can organize data that are categorized by groups in a number of ways:

Unstacked Data
You can enter the data for each group in separate columns. This method is useful if you are going to graph or analyze a group separately.

<table>
<thead>
<tr>
<th>Row</th>
<th>Quarter</th>
<th>Year</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1991</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1991</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1991</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1991</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1992</td>
<td>106</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1992</td>
<td>116</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1992</td>
<td>113</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1992</td>
<td>108</td>
</tr>
</tbody>
</table>

Stacked Data
You can stack the same data by year, eliminating the need for the column Year. Stacked data can be simpler to collect and scan in the worksheet.

<table>
<thead>
<tr>
<th>Row</th>
<th>Qtr</th>
<th>Sales91</th>
<th>Sales92</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>94</td>
<td>106</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>99</td>
<td>116</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>98</td>
<td>113</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>92</td>
<td>108</td>
</tr>
</tbody>
</table>
Raw Data
You can enter an observation each time it occurs. This method might be necessary if you have several grouping variables related to each observation.

<table>
<thead>
<tr>
<th>Repair</th>
<th>Mechanic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust</td>
<td>Steve</td>
</tr>
<tr>
<td>Exhaust</td>
<td>Steve</td>
</tr>
<tr>
<td>Body</td>
<td>Roger</td>
</tr>
<tr>
<td>Trans</td>
<td>Debbie</td>
</tr>
<tr>
<td>Body</td>
<td>Debbie</td>
</tr>
<tr>
<td>Engine</td>
<td>Roger</td>
</tr>
</tbody>
</table>

Frequency Data
You can list each observation once and use a frequency column to record the number of instances of each. Most Minitab graphs accept frequency columns. Frequency data can be simpler to collect and scan in the worksheet.

<table>
<thead>
<tr>
<th>Repair</th>
<th>RepFreq</th>
<th>Mechanic</th>
<th>MechFreq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust</td>
<td>15</td>
<td>Steve</td>
<td>20</td>
</tr>
<tr>
<td>Body</td>
<td>22</td>
<td>Roger</td>
<td>14</td>
</tr>
<tr>
<td>Trans</td>
<td>8</td>
<td>Debbie</td>
<td>16</td>
</tr>
<tr>
<td>Engine</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of changing data organization
1. Open the worksheet MARKET.MTW.
2. Choose Data > Unstack Columns.
3. In Unstack the data in, enter Sales.
4. In Using subscripts in, enter Year.
5. Under Store unstacked data, choose After last column in use.
6. Check Name the columns containing the unstacked data. Click OK.

Minitab places Sales values with the lowest Year number in the first storage column and values for the next lowest Year number in the second storage column.

Data window output

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>C7-T</th>
<th>C8</th>
<th>C9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Index</td>
<td>Quarter</td>
<td>Year</td>
<td>Sales</td>
<td>Advertis</td>
<td>Capital</td>
<td>AdAgency</td>
<td>Sales_1991</td>
<td>Sales_1992</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1991</td>
<td>94</td>
<td>17</td>
<td>8</td>
<td>Omega</td>
<td>1991</td>
<td>106</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1991</td>
<td>99</td>
<td>10</td>
<td>6</td>
<td>Omega</td>
<td>1991</td>
<td>116</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1991</td>
<td>98</td>
<td>9</td>
<td>12</td>
<td>Alpha</td>
<td>1991</td>
<td>113</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1992</td>
<td>106</td>
<td>24</td>
<td>29</td>
<td>Alpha</td>
<td>1992</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2</td>
<td>1992</td>
<td>116</td>
<td>18</td>
<td>32</td>
<td>Alpha</td>
<td>1992</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>3</td>
<td>1992</td>
<td>113</td>
<td>13</td>
<td>33</td>
<td>Omega</td>
<td>1992</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>4</td>
<td>1992</td>
<td>108</td>
<td>14</td>
<td>36</td>
<td>Omega</td>
<td>1992</td>
<td></td>
</tr>
</tbody>
</table>

More You could also turn the unstacked columns into stacked. See Stack.
Graph Editing Tools

Graph Editing Overview

Use graph editing to alter:

- Attributes of graph elements
- View or layout of graphs
- Added graph elements and information
- The graph itself, by updating its data or changing the variables used

Graph editing affects only the current graph. To change graphics defaults, choose Tools > Options.

After you finish editing, you can leave the graph in the current project or save it to a separate file using File > Save Graph As. If you save the graph in a Minitab Graphics Format (MGF) file, you can reopen the graph later in Minitab using File > Open Graph, then re-edit the graph. See Saving and Printing Graphs.

To enter edit mode, do one of the following:

- Double-click the graph item to edit.
- Select the graph item and choose Editor > Edit.
- Select the graph item, right-click, and choose Edit.
- Choose the graph item from the drop-down menu on the graph toolbar and click.

Graph Editing Topics

Scale Editing Editor Menu (When Graph Window is Active)
Labels Editing Editor Menu (When Brushing a Graph)
Data Fits Editing Embedded Graph Editor – Editing in Another Application
Data Display Editing Graph Tools Toolbar
Regions Editing 3-D Graph Toolbar
Panel Editing Graph Drawing Toolbar
Brushing Graph options for matrix plot, marginal plot, bar chart, pie chart, contour plot, and 3-D surface plot.

Editor Menu (When Graph Window is Active)

The following commands are available when you are working in a Graph window. Choose a command for more information:

- **Select**
 - Puts the active graph in select mode.

- **Brush**
 - Puts the active graph in brushing mode.

- **Crosshairs**
 - Puts the active graph in crosshairs mode.

- **Plant Flag**
 - Puts the active contour graph in planting flag mode.

- **Edit…**
 - Edits the selected graph item.

- **Select Item**
 - Choose from the list of items to select them for editing.

- **Add**
 - Choose from the list of items to add to your graph.

- **Panel…**
 - Edits the paneling attributes of your graph.

- **Graph Options…**
 - Edits the graph options of a matrix plot, marginal plot, bar chart, pie chart, contour plot, or 3-D surface plot.
Brush Graphs

Brushing Overview

Graphs allow you to visualize the relationships between points. After you make a graph, you often want to learn more about a point or a group of points. Brushing allows you to do this.

Initially you may find brushing useful to:
- Show the characteristics of outliers
- Tell whether points that lie in a brushing region share other characteristics

You may come away with a much greater understanding of the data after brushing, but you may also spot critical areas in a process that need immediate attention. See Brushing Features, Description, and Summary for more information.

You may find it useful to recreate your graph without the brushed points or, conversely, with only the brushed points. See Example of subsetting based on brushed points.

<table>
<thead>
<tr>
<th>Brushing Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brushing Tool</td>
<td>A special cursor that creates a brushing region.</td>
</tr>
<tr>
<td>Brushing Region</td>
<td>Bound by a dotted line, all points that fall within this region are considered brushed.</td>
</tr>
</tbody>
</table>

Creating a multiple graph layout.

Copies a selected text item (titles, annotation, footnotes) or the tool tip text of a selected item to the clipboard.

Copies command language used to create the active graph to the clipboard.

Duplicates the active graph.

Creates a graph with characteristics identical to the active graph but with different variables (Make Similar Graph).

Choose Duplicate Annotation, Bring to Front, Send to Back, Rotate Left, or Rotate Right. Also use to show or hide the Graph Annotation Tools toolbar.

Choose Update Graph Now, Update Graph Automatically, or Update All Graphs Now.

Zooms in or out.
Brushing Palette

Brushing Markers

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>58</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>52</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>78</td>
</tr>
</tbody>
</table>

Editor Menu (While Brushing the Active Graph)

The following commands are available when you are working in a Graph window. Choose a command for more information:

- **Select**
 Puts the active graph in select mode.

- **Brush**
 Puts the active graph in brushing mode.

- **Crosshairs**
 Puts the active graph in crosshairs mode.

- **Show Brushing Palette**
 Select to show or hide the brushing palette.

- **Set ID Variables**
 Select to set ID variables.

- **Create Indicator Variable**
 Select to create indicator variables.

Brushing Features Description and Summary

<table>
<thead>
<tr>
<th>To...</th>
<th>Do this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter brushing mode</td>
<td>Choose Editor > Brush.</td>
</tr>
</tbody>
</table>
| Brush points (form a new brushing region) | 1 Move the mouse until the brushing tool 🧤 appears.
 | 2 Drag the cursor to enclose the new brushing region. |
| Add identifier (ID) variables to the brushing palette | 1 Choose Editor > Set ID Variables.
 | 2 In Variables, enter the columns you want to use as identifiers.
 | 3 Choose Use as default for all graphs or Use for this graph only. |
| Move an existing brushing region | 1 Place the cursor in the brushing region. |
| | 2 When 🧤 appears, drag the brushing region to a different position. |
| Add additional points to the brushing palette | Do one of the following:
 | • To add points individually, [Shift]+click them.
 | • To add points that the brushing region passes over, while keeping the original brushed points, press [Shift] as you drag the brushing region. |
| Brush a single point | Click the point. |
Brush across Graph windows | Brush points in one graph; the points derived from the same row are highlighted automatically in other graphs.
--- | ---
Select a graph point from the brushing palette | Click the row in the brushing palette.
Highlight many graph points from the brushing palette | Do one of the following:
- Drag the cursor over the rows you want to highlight.
- [Shift]+click to highlight contiguous rows.
- [Ctrl]+click to add a noncontiguous row to the current selection.
Display/hide row numbers on the brushing palette | 1. Choose Editor > Set ID Variables.
 2. Enter a column to serve as an ID variable.
 3. Check or uncheck Include row numbers.
Move the brushing palette | Drag the palette by the title bar.
Resize the brushing palette vertically | Drag the lower-right corner of the brushing palette as desired.
Subset based on brushed data | 1. Brush the data.
 2. In the data source dialog, choose Data Options.
 3. Click the Subset tab.
 4. Choose the appropriate options to include or exclude the brushed points.
Display/hide the brushing palette | Choose Editor > Show/Hide the Brushing Palette.

Brush

Editor > Brush

Available only when a Graph window is active. Choosing Editor > Brush puts the graph in brushing mode. Changing worksheet data pertinent to the graph and choosing any of the Editor > Update options takes the graph out of brushing mode. You cannot brush graphs in which:

- Data are not represented with symbols
- A symbol represents a single value in the worksheet
- Points are based on a calculation involving more than one row, as in histograms, bar charts, boxplots, or pie charts
- Worksheet data have changed and the graph has not been updated. Conversely, a brushing region is removed if worksheet data change.

When you brush points in one graph, Minitab automatically brushes points from the same row that appear in other graphs. This is true whether the graphs appear in the same Graph window or in other Graph windows. Brushing across graphs can help you quickly see visual relationships across many variables.

Example of exploring data with brushing

Suppose you want to look at the effects of several variables on blood pressure. After making three scatterplots, you brush points of interest to examine them in the context of each graph and set ID variables to learn more about these points.

Step 1: Create the Graphs

1. Open the worksheet PERU.MTW.
2. Choose Graph > Scatterplot > Simple > OK.
3. In the first row of **Y variables**, enter Pulse; in **X variables**, enter Years.
4. In the second row of **Y variables**, enter Systol; in **X variables**, enter Diastol. Click OK.
5. Choose Graph > Scatterplot > With Regression > OK.
6. In **Y variables**, enter Pulse; in **X variables**, enter Height. Click OK.

Step 2: Brush the outliers

In the first graph, two points are much higher on the Years scale than the rest. You want to see whether these two points are outliers in different graphs.

1. Choose Editor > Brush.
2. Drag the cursor to create a brushing region around those two points.
The brushing palette shows that rows 38 and 39 are associated with those points. Look at rows 38 and 39 in the Data window to see the values of other variables for these individuals.

Points in the other graphs that have the same row number are also brushed, allowing you to compare different characteristics visually. In the second graph, you see that neither of the brushed points appear to be outliers.

Step 3: Set ID variables

In the first two graphs, two points are much higher on the Years scale than the rest. You want to get more information on these two points.

1. Choose Editor > Set ID Variables.
2. Enter Age, Weight, Height, and Systol. Click OK.
With the added ID variables in the brushing window you can see information related to the brushed points not otherwise expressed in the graph. In the third graph, the brushed point near the regression line shows a subject with a height and weight that are very close to the general relationship between height and weight. Another subject (the second brushed point) is quite overweight which may contribute to his high pulse rate. Further exploration may reveal more about the cause of this subject's high pulse rate.

To start brushing
1. Make the graph window active.
2. Choose Editor > Brush.
3. Drag the cursor over the points in the graph.

Show/Hide Brushing Palette
Editor > Show/Hide Brushing Palette
Displays or hides the brushing palette when an active Graph window is in Graph Brushing mode. You can enter the brushing mode when a Graph window is active by choosing Editor > Brush.

Create Indicator Variable
Editor > Create Indicator Variable
Use to create a column in the Data window called an indicator variable that identifies brushed rows with a column of data. If a row is currently brushed, the cell in that row of the indicator variable column has a value of 1. If a row is not brushed, the cell has a value of 0. The contents of the column change dynamically as you move the brushing region on the graph. You can choose to update this indicator column automatically or manually.
You can use the indicator variable to explore the data in different ways. For example, you can:

- Subset the data based on brushed points.
- Calculate descriptive statistics separately for the brushed and unbrushed points.
- Perform a regression analysis, omitting the brushed points.

Dialog Box Items

| Column: Enter the column where the indicator values will be stored. |
| Code brushed points as zero: Check this box to set brushed rows to 0, and nonbrushed rows to 1. If unchecked, brushed rows are set to 1 and nonbrushed rows are set to 0. |
| Update now: Select this option to change the values in the indicator variable to reflect the currently brushed set. |
| Update now and whenever the brushed set changes: Select this option to change the values in the indicator variable every time you move or change the brushing region. |

To create an indicator variable based on brushed points

1. Brush points of interest on the graph.
2. Choose Editor > Create Indicator Variable.
3. In Column, enter a column to hold the indicator values.
4. Check Code brushed points as zero to set brushed rows to 0, and non-brushed rows to 1. If unchecked, brushed rows are set to 1 and non-brushed rows are set to 0.
5. Do one of the following:
 - Choose Update now to update the indicator column to reflect the points that are currently brushed and then freeze these values.
 - Choose Update now and whenever the brushed set changes to change the values in the indicator variable every time you move or change the brushing region.
6. Click OK.

Set ID Variables

Editor > Set ID Variables

This dialog box allows you to add more information to the brushing palette for each brushed point, and to use the added ID variables for all graphs or just the active graph.

Dialog Box Items :

| Variables: Enter columns that will serve as ID variables. The brushing palette shows the added columns for each brushed point. |
| Use as default for all graphs using this worksheet: Choose to display the ID variables entered in Variables when brushing any graph created with the current worksheet. |
| Use for this graph only: Choose to display the ID variables entered in Variables when brushing the active graph only. The active graph will not be affected if you check Use as the default for all graphs using this worksheet later in the session. |
| Include row numbers: Check to show the row number of the brushed point, which is useful for locating the point in the Data window. |
Note To change the ID variables for another graph, make the Graph window active and choose Editor > Set ID Variables, then changing the settings.

To add or change ID variables in the brushing palette
1 Choose Editor > Set ID Variables.
2 In Variables, enter the columns that will be represented in the brushing palette.
3 Do one of the following:
 • Choose Use as default for all graphs using this worksheet to display the ID variables entered in Variables when brushing any graph created with the current worksheet.
 • Choose Use for this graph only to display the ID variables entered in Variables when brushing the active graph only. The active graph will not be affected if you use Use as the default for all graphs using this worksheet later in the session.
4 Check or uncheck Include row numbers to show or hide row numbers in the brushing palette, and click OK.

Select Graph Items
Selecting Groups and Single Items
You can select all points on a graph, a single group, or a single point. This method can also be used to select other graph objects:
• Other data representations such as boxes on boxplots or bars on bar charts
• Data labels and slice labels (all or one)
• Text in legends and output tables (entire legend/table or one line)
• Percentile line labels (all or one)
Note Available editing options may depend on whether you have selected a group or a single item.

Click on a graph point once to select all points.

Click the point a second time to select only those points within the group.
Click a third time to select the individual point.

To select objects and text
There are three methods for selecting graph elements. Depending on the item, you may find one easier than another.

Manual selection
1. Click the selection tool on the Graph Editing toolbar.
2. Click the object on the graph.

Menu selection
1. Choose Editor > Select Item, and then choose from the list.

Toolbar selection
1. Choose the object from the Graph Editing toolbar drop-down list of editable items.

Selected objects have handles:

When you select symbols, they display two handles. See Selecting groups and single items.

Text strings have handles at vertices (corners) and at line midpoints of a rectangle that surrounds them. See Selecting groups and single items.

Unrotated rectangles, squares, ellipses, and circles have handles at vertices (corners) and at line midpoints. For circles and ellipses, the vertices and endpoints are located on a rectangle that surrounds the object.

Selected polygons have handles at each vertex.

Tip
If you cannot select an object, it may be because a second object is in front of it. Select the object in front, choose Editor > Send to Back, then select the first object. See Bring to Front and Send to Back.

Edit
Editor > Edit
This menu item appears only when a Graph window is active. An editing dialog box appropriate for the selected item appears. To produce this dialog box you can:

- Double-click the graph item.
- Choose the graph item, right-click, and select Edit.
Customizing and Editing Graphs

- Choose the graph item and choose Editor > Edit.
- Choose the graph item from the drop-down menu on the graph editing toolbar and click.

Crosshairs

Crosshairs
Editor > Crosshairs
Allows you to place crosshairs anywhere on the data region of a graph and shows you the x,y coordinates of that point. Useful in exploring data without gridlines or reference lines, and in placing annotation items.

To use crosshairs
1. Create a graph with a two-variable data region.
2. Choose Editor > Crosshairs, or click in the Graph Editing toolbar.
3. Position the crosshairs on the data region of the graph.

Example of crosshairs
Suppose you create a large scatterplot of weight and height data. Creating enough reference lines to identify the coordinates of each point would clutter the graph, so you opt to use crosshairs.
1. Open the worksheet PERU.MTW.
2. Choose Graph > Scatterplot.
3. Choose Simple, then click OK.
4. In Y variables, enter Height; in X variables, enter Weight. Click OK.
5. Choose Editor > Crosshairs, or click on the Graph Editing toolbar.
6. Place the crosshairs over a point of interest. The coordinates of the crosshairs appear in the upper left corner of the graph.

Graph window output

Interpreting the results
You now know the precise coordinates of the point in question. The crosshairs also help you visualize the number of points above and below the selected point on both axes. After exploring the data in this manner, you may choose to add reference lines.
Plant Flag

Planting Flags
Editor > Plant Flag
Allows you to display the x and y values as well as the exact z value of any point on a factorial, response surface, or mixture contour plot.

To plant flags
1. Create a factorial, response surface, or mixture contour plot.
2. Choose Editor > Plant Flag.
3. Position the crosshairs on the point of interest in the data region. Click and drag the mouse to the location for the flag label to appear.

Example of planting flags
Suppose you have created a response surface contour plot of yield data from a recent soybean crop. You want to know the exact z-values of certain points.

Step 1: Create the graph
1. Open the worksheet CCD_EX1.MTW.
3. Check Contour plot and click Setup.
4. Click OK in each dialog box.

Step 2: Plant the flag
1. Choose Editor > Plant Flag.
2. Position the crosshairs on the point of interest in the data region. Click and drag the mouse to the location for the flag label to appear.
Graph window output

Contour Plot of BeanYield vs PhosAcid, Nitrogen

Edit Planted Flag – Attributes

Select flag > Editor > Edit > Attributes

Use to control the background fill and border attributes of the flag label.

Dialog box items

Fill Pattern

Automatic: Choose to accept the default fill pattern.

Custom: Choose change the default fill pattern.

Type: Choose a fill type.

Background color: Choose a background color.

Borders and Fill Lines

Automatic: Choose to accept the default border and fill lines.

Custom: Choose to change the default border and fill lines.

Type: Choose a border line type.

Color: Choose a border and fill line color.

Size: Choose a border line thickness.

To edit planted flag attributes

1. Double-click the flag.

2. Click the Attributes tab.

3. Under Fill Pattern, choose one of the following:
 - Automatic to accept the default fill pattern.
 - Custom to change the default fill pattern.
 - From Type, choose a fill type.
 - From Background color, choose a background color.

4. Under Borders and Fill Lines, choose one of the following:
• **Automatic** to accept the default border and fill lines.
• **Custom** to change the default border and fill lines.
 - From **Type**, choose a border line type
 - From **Color**, choose a border and fill line color.
 - From **Size**, choose a border line thickness.

5 Click **OK**.

Edit Planted Flag – Font

Select flag > Editor > Edit Flag > Font

Specify the font, style, size, and color of flag labels.

Dialog box items

Font: Choose a font.

Style
- **Bold:** Check to make the text bold.
- **Italic:** Check to italicize the text.
- **Underline:** Check to underline the text.

Size: Enter a font size.

Color: Choose a text color.

Preview: Displays sample text with the selected attributes. This box does not accept input.

To edit planted flag font

1 Double-click the flag.
2 Click the **Font** tab.
3 To change font attributes, do any of the following:
 - Under **Font**, type a font name or choose one from the list.
 - Under **Style**, check **Bold**, **Italic**, and/or **Underline**.
 - Under **Size**, type a font size or choose one from the list.
 - Under **Color**, choose a text color.
4 Click **OK**.

Example of editing a planted flag

Suppose you have planted a flag on a contour plot and decide to change its appearance. This example assumes you have created the contour plot and flag in Example of planting flags.

1 Double-click the flag.
2 Click **Attributes**.
3 Under **Borders and Fill Lines**, choose **Custom**.
4 Under **Color**, choose ⬤.
5 Under **Size**, choose 2.
6 Click **Font**.
7 Under **Font**, choose **Times New Roman**.
8 Under **Size**, choose 10.
9 Under **Color**, choose ⬤. Click **OK**.
Graph window output

Add Items to Graph

Adding Graph Elements
Editor > Add
You can add graph elements to the active graph. The elements that can be added are determined by the graph. To remove graph items, see Deleting a Graph Element. You can add the following elements:

<table>
<thead>
<tr>
<th>Scale</th>
<th>Labels</th>
<th>Data fits</th>
<th>Data display</th>
<th>Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td>Title</td>
<td>Distribution Fit</td>
<td>Scatterplot, Matrix Plot</td>
<td>Legend</td>
</tr>
<tr>
<td>Gridline</td>
<td>Subtitle</td>
<td>Regression Fit</td>
<td>Histogram</td>
<td>Table</td>
</tr>
<tr>
<td>Reference Lines</td>
<td>Footnote</td>
<td>Smoother</td>
<td>Boxplot</td>
<td></td>
</tr>
<tr>
<td>Percentile Lines</td>
<td>Data Labels</td>
<td>Calculated Line</td>
<td>Probability Plot</td>
<td></td>
</tr>
<tr>
<td>Axis Labels</td>
<td>Slice Labels</td>
<td>Empirical CDF</td>
<td>Interval Plot, Individual Value Plot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Default Title</td>
<td></td>
<td>Bar Chart</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Default Subtitle</td>
<td></td>
<td>Time Series Plot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Default Footnote</td>
<td></td>
<td>Contour Plot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3D Scatterplot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3D Surface Plot</td>
<td></td>
</tr>
</tbody>
</table>

To add a graph element
With the menu bar:
1. Choose Editor > Add.
2. Choose the item you wish to add.
Depending on the item, you may be prompted to provide more information. Do so and click OK.

With the right-click menu:
1. Right-click the graph.
2. Choose Add and select the item you wish to add.
3. Depending on the item, you may be prompted to provide more information. Do so and click OK.

With the graph editing toolbar:
1. Select an item from the drop down list of addable elements.
2. Depending on the item, you may be prompted to provide more information. Do so and click OK.

Data Display
Add Data Display – 3D Scatterplot
Editor > Add > Data Display
Use to add or remove data display types from the active graph.

Dialog box items
Data Display
- Symbols: Check to represent each data point with a symbol.
- Project lines: Check to display lines that project from each data point to its base.

Apply same groups of current displays to added displays: Check to use the same attribute grouping variables for the added displays as are used for the current displays.

Add Data Display – 3D Surface Plot
Editor > Add > Data Display
Use to add or remove data display types from the active graph.

Dialog box items
Data Display
- Surface: Check to display a continuous surface of z-values (surface plot) or a grid of z-values (wireframe plot) that is fit to your data.
- Symbols: Check to represent each data point with a symbol.
- Project lines: Check to display lines that project from each data point to its base.

Add Data Display – Bar Chart
Editor > Add > Data Display
Use to add or remove data display types from the active graph.

Dialog box items
Data Display
- Bars: Check to display bars that join each data value to its base.
- Symbols: Check to represent each data value with a symbol.
- Connect line: Check to connect the data values.
- Project lines: Check to display lines that project from each data point to its base.

Apply attribute assignment variables of current displays to added displays: Check to use the same attribute grouping variables for the added displays as are used for the current displays.

Add Data Display – Boxplot
Editor > Add > Data Display
Use to add or remove data display types from the active graph.
Dialog box items

Data Display

Median confidence interval box: Check to display a confidence interval box, which shows the 95% (default) confidence interval for the median.

Interquartile range box: Check to display an interquartile range box (default). The box bottom is at the 25th percentile and box top at the 75th percentile.

Range box: Check to display a box that extends from the minimum data value to the maximum data value.

Outlier symbols: Check to represent each outlier with a symbol.

Individual symbols: Check to represent each data point with a symbol.

Median symbol: Check to represent each median with a symbol.

Median connect line: Check to connect the medians of grouped plots (only visible if you have categorical variables in the boxplot).

Mean symbol: Check to represent each mean with a symbol.

Mean connect line: Check to connect the means of grouped plots (only visible if you have categorical variables in the boxplot).

Apply attribute assignment variables of current displays to added displays: Check to use the same attribute grouping variables for the added displays as are used for the current displays.

Add Data Display – Contour Plot

Editor > Add > Data Display

Use to add or remove data display types from the active graph.

Dialog box items

Data Display

Area: Check to shade the areas between contours.

Contour lines: Check to draw contour lines.

Symbols: Check to represent each x-y data point with a symbol.

Add Data Display – Empirical CDF

Editor > Add > Data Display

Use to add or remove data display types from the active graph.

Dialog box items

Data Display

Connect line: Choose to connect the data points.

Distribution fit: Choose to fit a distribution to the data.

Add Data Display – Histogram

Editor > Add > Data Display

Use to add or remove data display types from the active graph.

Dialog box items

Data Display

Bars: Check to display bars that join each data value to its base. By default, the height of each bar is equal to the frequency of the interval it represents.

Symbols: Check to represent each data value with a symbol.

Project lines: Check to display lines that project from each data point to its base.

Area: Check to draw a histogram with an outline of the bars (only visible if you uncheck Bars).

Add Data Display – Interval Plot, Individual Value Plot

Editor > Add > Data Display

Use to add or remove data display types from the active graph.
Dialog box items

Data Display

Interval bar: Check to display a confidence interval bar. The default confidence level is 95%.

Bar: Check to display bars that join each mean to its base.

Individual symbols: Check to represent each data point with a symbol.

Mean symbol: Check to represent each mean with a symbol.

Mean connect line: Check to connect the means of grouped plots (only visible if you have categorical variables in the plot).

Median symbol: Check to represent each median with a symbol.

Median connect line: Check to connect the medians of grouped plots (only visible if you have categorical variables in the plot).

Apply attribute assignment variables of current displays to added displays: Check to use the same attribute grouping variables for the added displays as are used for the current displays.

Add Data Display – Probability Plot

Editor > Add > Data Display

Use to add or remove data display types from the active graph.

Dialog box items

Data Display

Symbols only: Check to represent each data value with a symbol.

Distribution fit: Choose to fit a distribution to the data.

Add Data Display – Scatterplot, Matrix Plot

Editor > Add > Data Display

Use to add or remove data display types from the active graph.

Dialog box items

Data Display

Symbols: Check to represent each data point with a symbol.

Connect line: Check to connect the data points.

Project lines: Check to display lines that project from each data point to its base.

Area: Check to shade the area below the data points to their base.

Apply same groups of current displays to added displays: Check to use the same attribute grouping variables for the added displays as are used for the current displays.

Add Data Display – Time Series Plot

Editor > Add > Data Display

Use to add or remove data display types from the active graph.

Dialog box items

Data Display

Symbols: Check to represent each data point with a symbol.

Connect line: Check to connect the data points.

Project lines: Check to display lines that project from each data point to its base.

Apply same groups of current displays to added displays: Check to use the same attribute grouping variables for the added displays as are used for the current displays.

To add data display items

1. Choose Editor > Add > Data Display.
2. In Data Display, check the items you wish to add, then click OK.
Customizing and Editing Graphs

Data Fits

Add Distribution Fit

Editor > Add > Distribution Fit

Use to fit a distribution to your data to help you determine whether the data can be adequately modeled by the selected distribution.

After creating a graph, you can change the fitted distribution, add groups, and change the fitted line attributes (see Editing Data Fits Overview).

Dialog box items

Distribution: Choose a distribution.

Historical parameters: Enter historical estimates of the distribution parameters. Minitab displays the necessary parameters, which depend on the chosen distribution. These parameters may include Mean, Standard Deviation, Location, Shape, Scale, or Threshold. If you do not enter historical estimates, Minitab estimates the parameters from the data. You can enter some historical estimates and have Minitab estimate the other parameters. See Distribution parameters for restrictions.

To add a distribution fit

1 Do one of the following:
 - Click on the graph editing toolbar and choose Distribution Fit from the Add List.
 - Right-click the active graph and choose Add > Distribution Fit.
 - Choose Editor > Add > Distribution Fit.
2 From Distribution, choose a distribution.
3 In Historical parameters, enter historical estimates of the distribution parameters. Minitab displays the necessary parameters, which depend on the chosen distribution. These parameters may include Mean, Standard Deviation, Location, Shape, Scale, or Threshold. If you do not enter historical estimates, Minitab estimates the parameters from the data. You can enter some historical estimates and have Minitab estimate the other parameters. See Distribution parameters for restrictions.
4 Click OK.

Add Lowess Smoother

Editor > Add > Smoother

Use to add a lowess smoother to an active scatterplot, matrix plot, histogram, or time series plot. You can use a lowess smoother to explore the relationship between two variables without fitting a specific model.

After creating a graph, you can change the lowess smoothing parameters, add groups, and change the fitted line attributes (see Editing Data Fits Overview).

Dialog box items

Lowess Smoothing Parameters

Degree of smoothing: Enter a number between 0 and 1 for the fraction (f) of the total number of points to use to calculate the fitted values at each x-value. The default is 0.5. See Specifying lowess smoothing parameters.

Number of steps: Enter a number from 0 to 10 to specify the number of iterations of smoothing used to limit the influence of outliers. Each step reduces the weight given to outliers in the next iteration. The default is 2. See Specifying lowess smoothing parameters.

Apply same groups of current displays to lowess smoother: Check to use the same grouping variables for the fitted line as are used for all other data displays.

To add a lowess smoother

1 Do one of the following:
 - Click on the graph editing toolbar and choose Smoother from the Add List.
 - Right-click the active graph and choose Add > Smoother.
 - Choose Editor > Add > Smoother.
2 Under Lowess Smoothing Parameters, if you like, do one or both of the following:
 - In Degree of smoothing, enter a number between 0 and 1 for the fraction (f) of the total number of points to use to calculate the fitted values at each x-value. The default is 0.5. See Specifying lowess smoothing parameters.
 - In Number of steps, enter a number from 0 to 10 to specify the number of iterations of smoothing used to limit the influence of outliers. Each step reduces the weight given to outliers in the next iteration. The default is 2.
See Specifying Lowess Smoothing Parameters for details.

3 To use the same grouping variables for the fitted line as is used for all other data displays, check **Apply same groups of current displays to lowess smoother**.

4 Click **OK**.

Add Regression Fit

Editor > Add > Regression Fit

Use to add a least squares regression line to an active scatterplot or matrix plot. Use the regression fit to examine the relationship between the response variable (y) and the predictor variable (x). If you hover the mouse pointer over the fitted line, Minitab displays the fitted regression equation. After creating a graph, you can change the model order for the regression fit, add groups, or change the fitted line attributes (see Editing Data Fits Overview).

Dialog box items

Model Order

- **Linear**: Choose to fit a linear model.
- **Quadratic**: Choose to fit a quadratic model.
- **Cubic**: Choose to fit a cubic model.

Fit intercept: Check to fit a constant term (the y-intercept of the regression line). Uncheck to fit the model without a constant term.

Apply same groups of current displays to regression fit: Check to use the same grouping variables for the fitted line as are used for all other data displays.

To add a regression fit

1 Do one of the following:
 - Click on the graph editing toolbar and choose **Regression fit** from the Add List.
 - Right-click the active graph and choose **Add > Regression Fit**.
 - Choose **Editor > Add > Regression Fit**.

2 Under **Model Order**, choose **Linear**, **Quadratic**, or **Cubic**, based on the model you want to fit.

3 Check or uncheck **Fit intercept**, to include or exclude the intercept (constant) in the model. If you uncheck **Fit intercept**, the regression line passes through the origin (x = 0, y = 0)

4 To use the same grouping variables for the fitted line as is used for all other data displays, check **Apply same groups of current displays to regression fit**.

5 Click **OK**.

Labels

Add Title

Editor > Add > Title

Use to add a title to the active graph. After adding a title, you can change its attributes and alignment (see Editing Labels Overview).

Dialog box item

Title: Type a title, which appears below Minitab's default title.

To add a title

1 Choose **Editor > Add > Title**. (You can also use the graph editing toolbar or the right-click menu.)
 - Click on the graph editing toolbar and choose **Title** from the Add list.
 - Right-click the active graph and choose **Add > Title**.
 - Choose **Editor > Add > Title**.

2 In **Title**, type a title, which appears below Minitab's default title.

3 Click **OK**.
Add Subtitle
Editor > Add > Subtitle
Use to add a subtitle to the active graph. After adding a subtitle, you can change its attributes and alignment (see Editing Labels Overview).

Dialog box item
Subtitle: Type a subtitle, which appears below any default titles and default subtitles.

To add a subtitle
1 Do one of the following:
 - Click on the graph editing toolbar and choose Subtitle from the Add List.
 - Right-click the active graph and choose Add > Subtitle.
 - Choose Editor > Add > Subtitle.
2 In Subtitle, type a subtitle, which appears below any default titles and default subtitles.
3 Click OK.

Add Footnote
Editor > Add > Footnote
Use to add a footnote to the active graph. After adding a footnote, you can change its attributes and alignment (see Editing Labels Overview).

Dialog box item
Footnote: Type a footnote, which appears at the bottom left of the graph. Each additional footnote goes below the preceding footnote.

To add a footnote
1 Do one of the following:
 - Click on the graph editing toolbar and choose Footnote from the Add List.
 - Right-click the active graph and choose Add > Footnote.
 - Choose Editor > Add > Footnote.
2 In Footnote, type a footnote, which appears at the bottom left of the graph. Each additional footnote goes below the preceding footnote.
3 Click OK.

Add Text
Use to add text to the active graph.

Dialog box item
Text: Enter the text.

To add text
1 In the Graph Annotation Tools toolbar, click
2 Place the crosshairs at the point on the graph where you want one corner of the text box.
3 Click and drag the crosshairs to the opposite corner of the text box and release the mouse.
4 In Text, type the text. Click OK.

Add Data Labels
Editor > Add > Data Labels
Use to label each data point on the active graph. After adding data labels, you can change their attributes, alignment, and type (see Editing Labels Overview).
Dialog box items

Label Type

Use y-value labels: Choose to label each point with its y-axis value.

Use row numbers: Choose to label each point with its worksheet row number. You cannot label histograms or bar charts with row numbers.

Use labels from column: Choose to label points with values stored in a column. Enter a text, numeric, or date/time column that contains the data labels.

If graph data match worksheet rows, as for scatterplot, Minitab matches the label column to the data column by worksheet row number. If graph data are summaries of worksheet values, as for histogram and bar chart, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

To add data labels

1. Do one of the following:
 - Click on the graph editing toolbar and choose Data Labels from the Add List.
 - Right-click the active graph and choose Add > Data Labels.
 - Choose Editor > Add > Data Labels.

2. Choose one of the following:
 - **Use y-value labels** to label each point with its y-axis value.
 - **Use row numbers** to label each point with its worksheet row number. You cannot label medians or means with row numbers.
 - **Use labels from column** to label points with values stored in a column. Then, enter a text, numeric, or date/time column that contains the data labels.

 If graph data match worksheet rows, as for scatterplot, Minitab matches the label column to the data column by worksheet row number. If graph data are summaries of worksheet values, as for histogram and bar chart, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

3. Click OK.

Add Data Labels – Boxplot

Editor > Add > Data Labels > Outliers, Individual Data, Medians, or Means

Use to label outliers, individual data points, medians, or means on the active graph. After adding data labels, you can change their attributes, alignment, and type (see Editing Labels Overview).

Dialog box items

Label Type

None: Choose to suppress data labels.

Use y-value labels: Choose to label each point with its y-axis value.

Use row numbers: Choose to label each point with its worksheet row number. You cannot label medians or means with row numbers.

Use labels from column: Choose to label points with values stored in a column. Enter a text, numeric, or date/time column that contains the data labels.

For outliers, Minitab assigns labels from worksheet rows representing the outliers. For individual data labels, Minitab matches the label column to the data column by worksheet row number. For median and mean labels, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

To add data labels to a boxplot

1. Do one of the following:
 - Click on the graph editing toolbar and choose Data Labels from the Add List.
 - Right-click the active graph and choose Add > Data Labels.
 - Choose Editor > Add > Data Labels.

2. Click the Outliers, Individual Data, Medians, or Means tab.
Customizing and Editing Graphs

3 Choose one of the following:
 - **Use y-value labels** to label each point with its y-axis value.
 - **Use row numbers** to label each point with its worksheet row number. You cannot label medians or means with row numbers.
 - **Use labels from column** to label points with values stored in a column. Then, enter a text, numeric, or date/time column that contains the data labels.

 For outliers, Minitab assigns labels from worksheet rows representing the outliers. For individual data labels, Minitab matches the label column to the data column by worksheet row number. For median and mean labels, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

4 Click **OK**.

Add Data Labels – Interval Plot, Individual Value Plot

Editor > Add > Data Labels > Individual Data, Interval Endpoints, Means, or Medians

Use to label individual data points, interval endpoints, means, or medians on an active interval plot or individual value plot. After adding data labels, you can change their attributes, alignment, and type (see Editing Labels Overview).

Dialog box items

Label Type

- **None**: Choose to suppress data labels.
- **Use y-value labels**: Choose to label each point with its y-axis value.
- **Use row numbers**: Choose to label each point with its worksheet row number. You cannot label interval endpoints, means, or medians with row numbers.
- **Use labels from column**: Choose to label points with values stored in a column. Enter a text, numeric, or date/time column that contains the data labels.

For individual data labels, Minitab matches the label column to the data column by worksheet row number. For interval endpoint, mean, and median labels, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

To add data labels to an interval plot

1 Do one of the following:
 - Click **on the graph editing toolbar and choose Data Labels from the Add List.**
 - Right-click the active graph and choose **Add > Data Labels**.
 - Choose **Editor > Add > Data Labels**.

2 Click the **Individual Data, Interval Endpoints, Means, or Medians** tab.

3 Choose one of the following:
 - **Use y-value labels** to label each point with its y-axis value.
 - **Use row numbers** to label each point with its worksheet row number. You cannot label interval endpoints, means, or medians with row numbers.
 - **Use labels from column** to label points with values stored in a column. Enter a text, numeric, or date/time column that contains the data labels.

 For individual data labels, Minitab matches the label column to the data column by worksheet row number. For interval endpoint, mean, and median labels, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

4 Click **OK**.

Add Slice Labels

Editor > Add > Slice Labels

Use to label slices in a pie chart with category names, frequencies, or percents. After creating a graph, you can change the slice label type, font, attributes, and alignment (see Editing Labels Overview).
Dialog box items

Label pie slices with
- **Category name**: Check to label each slice with the group name.
- **Frequency**: Check to label each slice with the number of observations.
- **Percent**: Check to label each slice with the percentage of the pie.

Draw a line from label to slice: Check to draw a line from each label to the slice.

To add slice labels to a pie chart
1. Do one of the following:
 - Click on the graph editing toolbar and choose Slice Labels from the Add List.
 - Right-click the active graph and choose Add > Slice Labels.
 - Choose Editor > Add > Slice Labels.
2. Under **Label pie slices with**, check one or more of the following:
 - **Category name** to label each slice with the category name.
 - **Frequency** to label each slice with the number of observations.
 - **Percent** to label each slice with the percentage of the pie.
3. If you like, check **Draw a line from label to slice**.
4. Click OK.

Scale

Add Reference Lines
Editor > Add > Reference Lines
Choose to display reference lines. By default, Minitab displays labels for each reference line drawn. Customize reference lines using scale editing.

Dialog box items

- **Show reference lines for Z positions**: Enter the position for z-scale reference lines to be drawn. Only available with 3D graphs.
- **Show reference lines for Y positions**: Enter the position for y-scale reference lines to be drawn.
- **Show reference lines at Y (value scale) positions**: Enter the position for value-scale reference lines to be drawn. Only available with categorical graphs.
- **Show reference lines for X positions**: Enter the position for x-scale reference lines to be drawn.
- **Show reference lines at X (category scale positions)**: Enter the position for categorical-scale reference lines to be drawn. Values that do not correspond with a categorical value will not be labeled. Only available with categorical graphs.

To add reference lines
1. Choose Editor > Add > Reference Lines.
2. In **Show reference lines for Y positions**, enter the y-scale positions where you want to display reference lines.
3. In **Show reference lines for X positions**, enter the x-scale positions where you want to display reference lines.
4. Click OK.

Add Percentile Lines
Editor > Add > Percentile Lines
Choose to display percentile lines. By default, Minitab displays labels for each percentile line drawn. Customize a percentile line using scale editing.

Dialog box items

- **Percentile Lines**
 - **At Y values**: Enter the y-values, either in percent, probability, or score, where you want the line to be drawn. When entering multiple percentiles, leave a space between each entry.
At data values: Enter the data value where you want the line to be drawn. When entering multiple values, leave a space between each entry.

To display percentile lines
1. Choose Editor > Add > Percentile Lines.
2. Under Percentile Lines, choose At Y values or At data values and enter the y-values (percentiles, probabilities, or scores) or data values where you want lines drawn. When entering multiple percentiles, leave a space between each entry.
3. If you like, use any dialog box options, then click OK.

Add gridlines
Editor > Add > Gridlines
Use to add gridlines to the active graph. Not all items are available with all graphs.

Dialog box item
Show gridlines for: Check to add gridlines at the specified locations.
- Z major ticks
- Z minor ticks
- Y major ticks
- Y minor ticks
- X major ticks
- X minor ticks

Note: If the active graph has both primary and secondary scales, this dialog allows you to add gridlines by scale as well as axis.

To add gridlines
1. Choose Editor > Add > Gridlines.
2. In Show gridlines for, check the items you wish to add, then click OK.

Add Calculated Line
Editor > Add > Calculated Line
After you create a graph, you can add a line that is produced by the connection of calculated y- and x-coordinates. Do this to see how the experimental points match with a theory based on a function or some other formula.

Dialog box items
Coordinates
- Y column: Enter the column containing the calculated y-coordinates of theoretical values.
- X column: Enter the column containing the calculated x-coordinates of theoretical values.

To add a calculated line
1. Choose Editor > Add > Calculated Line.
2. In Y column, enter the column that contains the y-coordinates for the line.
3. In X column, enter the column that contains the x-coordinates for the line. Click OK.

Panel Graphs

Edit Panels – Panel
Select panel label > Editor > Edit Panels > Panels
Use to change the categorical variable that defines the panels, and to change the arrangement of panel.
Dialog box items

By variables with groups in separate panels: Enter the columns containing the paneling variables, creating a panel for each distinct combination of group values.

Graph Variables in Panel Arrangement Only available when a By variable is added to a graph already paneled with Multiple Variables.

Graph variables vary slowest: Choose to arrange panels by graph variables when viewed left to right.

Graph variables vary fastest: Choose to arrange panels by paneling variable when viewed left to right.

Paneling Method Only available with time series plots or area graphs.

None: Choose to join the split panels.

Use By variables to group data: Choose to panel by variable values.

By variables with groups in separate panels: Enter the columns containing the paneling variables, creating a panel for each distinct combination of group values.

Split data across panels: Choose to change the number of data points per panel.

Data per panel: Enter the number of data points per panel.

Example of editing paneling

In the Example of a scatterplot with connect line, you created a graph that was paneled with a certain By variable. You want to edit the graph to reflect paneling by a different variable.

1. Choose Editor > Edit Panels.
2. Under By variables with groups in separate panels, enter Operator. Click OK.

Graph window output

Edit Panels – Arrangement

Select panel label > Editor > Edit Panels > Arrangement
Use to change the default panel arrangement and the margins separating the panels.

Dialog box items

Rows and Columns

Automatic: Choose to accept the default panel arrangement.

Custom: Choose to change the panel arrangement.

Rows: Enter the number of rows in your custom panel layout.

Columns: Enter the number of columns in your custom panel layout.

Margins between panels: Choose to adjust the space between the panels, then enter a value from 0 to 0.25 in figure units.
To edit panel arrangement
1. Select a panel label.
2. Choose Editor > Edit Panels, then click the Arrangement tab.
3. Under Rows and Columns, choose one of the following:
 - Automatic to accept the default panel arrangement.
 - Custom to change the default arrangement.
 - In Rows, enter the number of rows.
 - In Columns, enter the number of columns.
4. In Margins between panels, enter a value between 0 and 0.25 to adjust the space between the panels. Click OK.

Edit Panels – Options
... > Edit Panels > Options
Use to customize the placement of ticks on panels, as well as the source and amount of information included in panel labels.

Dialog box items
Alternate Ticks On Panels When Appropriate Not available with pie charts.
 - Alternate panels: Choose to alternate the side on which ticks appear in adjoining panels.
 - Don’t alternate panels: Choose to place ticks on the same side in adjoining panels.
Source of Panel Labels The available items in this section depend on the active graph.
 - Y variable name: Check to label the panels with y-scale variable names.
 - X variable name: Check to label the panels with x-scale variable names.
 - Graph variable name: Check to label the panels with the graph variable name.
Group Information
 - Both variable names and levels: Choose to label the panels with both variable names and levels.
 - Variable levels only: Choose to label the panels with variable levels only.
 - None: Choose to hide variable names and levels in panel labels.

To edit panel options
1. Select a panel label.
2. Choose Editor > Edit Panels, then click the Options tab.
3. Under Alternate Ticks On Panels When Appropriate, choose Alternate panels or Don’t alternate panels.
4. Under Sources of Panel Labels, check or uncheck Y variable name, X variable name, or Graph variable name to specify the source of the panel labels.
5. Under Group Information, choose Both variable names and levels, Variable levels only, or None to display the respective degree of panel label information. Click OK.

Edit Panels – Font
Select panel label > Editor > Edit Panels > Font
Use to change the panel label font or attributes.

Dialog box items
Font: Choose a font.
Style
 - Bold: Check to make the text bold.
 - Italic: Check to italicize the text.
 - Underline: Check to underline the text.
Size: Enter a font size.
Color: Choose a text color.
Preview: Displays sample text with the selected attributes. This box does not accept input.
To edit panel font
1 Select a panel label.
2 Choose Editor > Edit Panels, then click the Font tab.
3 To change font attributes, do any of the following:
 • Under Font, type a font type or choose it from the list.
 • Under Style, check Bold, Italic, and/or Underline.
 • Under Size, type a font size or choose it from the list.
 • From Color, choose a text color.
4 Click OK.

Example of editing panel attributes
In the Example of paneling graphs, you created a simple paneled graph. You want to edit the paneling attributes of this graph.

Arrangement
Change the arrangement of the rows and columns.
1 Double-click a panel label.
2 Click the Arrangement tab.
3 Under Rows and Columns, choose Custom.
4 In Rows, enter 2, and in Columns, enter 1. Click OK.

Options
Alter the tick display and source of panel labels.
1 Double-click a panel label.
2 Click the Options tab.
3 Under Alternate Ticks on Panels When Appropriate, choose Don’t alternate panels. Click OK.

Font
Change the panel label font.
1 Double-click a panel label.
2 Click the Font tab.
3 Under Style, choose Bold.
4 Under Size, choose 14. Click OK.
Individual Graph Options

Matrix Plots – Options

Graph > Matrix Plot > choose Matrix of plots – Simple, With Groups, or With Smoother > OK > Matrix Options

Use to control the matrix display and variable label placement for a matrix of plots. After you create a matrix plot, you can control the placement of ticks and change plot margins (see Edit Matrix Plot Options).

Dialog box items

Matrix Display
- Full: Choose to display the full matrix.
- Lower left: Choose to display the lower left portion of the matrix.
- Upper right: Choose to display the upper right portion of the matrix.

Variable Label Placement
- Diagonal: Choose to display the variable labels along the diagonal. (default)
- Boundary: Choose to display the variable labels along the boundary of the matrix.

Marginal Plot – Options

Graph > Marginal Plot > choose With Histograms, With Boxplots, or With Dotplots > OK > Marginal Options

Use to specify the type of plot to display and which margins to include.

Dialog box items

Type of marginal plot
- Histogram: Choose to display a scatterplot with histograms in margins.
- Boxplot: Choose to display a scatterplot with boxplots in margins.
- Dotplot: Choose to display a scatterplot with dotplots in margins.

Show marginal plot for
- X and Y: Choose to display plots of both the x- and y-axis variables.
- X only: Choose to display a plot of the x-axis variable only.
- Y only: Choose to display a plot of the y-axis variable only.

Bar Chart – Options

Graph > Bar Chart > OK > Bar Chart Options

Use to specify increasing or decreasing bar order, choose a cumulative y-scale, or choose a percent scale for the y-axis. If you have more than one categorical variable, use to specify the grouping level for calculating the scale and to stack data.

Dialog box items

Order Main X Groups Based On Choose the order for the bars. See Ordering Category Groups Based on Y-Axis Values.
- Default: Choose to use the default order for bars. For bar charts of counts of unique values and functions of a variable, the default order is ascending, either numerically, chronologically, or alphabetically. (To use a value order other than alphabetical for text categories, see Ordering text categories.) For bar charts of values from a table, the default order is always the order in which the categories appear in the worksheet; any value order is ignored.
- Increasing Y: Choose to order bars from smallest to largest y-values.
- Decreasing Y: Choose to order bars from largest to smallest y-values.

Note If the data have multiple categorical variables, Minitab orders the bars by the sum of chart values for the outermost cluster groups.

Show Y as Percent: Check to use a percent scale on the y-axis. See Using Percent Scales and Accumulating Y Across X.

Accumulate Y across X: Check to use a cumulative scale on the y-axis. See Using Percent Scales and Accumulating Y Across X.

Take Percent and/or Accumulate If you have two or more categorical variables, specify for which grouping level you want to show y as a percent and/or accumulate y across x. The options available depend on the number of categorical variables you specify. For more information, see Using Percent Scales and Accumulating Y Across X.
Across all categories: Choose to apply a percent scale and/or cumulative scale across all categories.

Within categories at level 1 (outermost): Choose to apply a percent scale and/or cumulative scale within categories at the outermost scale level only.

Within categories at level 2: Choose to apply a percent scale and/or cumulative scale within categories at the second scale level from the bottom only.

Within categories at level 3: Choose to apply a percent scale and/or cumulative scale within categories at the third scale level from the bottom only.

Stack values for last categorical variable: Check to stack the categories for the last categorical variable. Each category is represented by a separate segment of a bar. (Only available when editing a bar chart with two or more categorical variables.)

Pie Chart – Options
Graph > Pie Chart > Pie Chart Options
Use to specify the slice order, slice starting angle, and the minimum category size for separate slices. After creating a pie chart, you can also:

- Change the slice order, start angle, and pie diameter (see Edit Pie - Options).
- Explode slices (see Edit Pie - Explode).
- Change the slice attributes (see Edit Pie - Attributes).

Dialog box items
Order slices by

Default: Choose to accept the default slice order. For raw data, the slice order is increasing value for numeric and date/time data; or alphabetical for text data. (To use a value order other than alphabetical for text categories, see Ordering text categories.) For summarized data, the default slice order is always the order in which the categories appear in the worksheet; any value order is ignored.

Increasing volume: Choose to order slices from smallest to largest.

Decreasing volume: Choose to order slices from largest to smallest.

Start angle: Type the starting angle in degrees for the slices. By default, slices start at 90° (12 o'clock) and go clockwise.

Combine slices of this percent or less: Type a minimum percentage for separate slices. Categories less than this percentage are grouped into a slice named Other, which is always placed last.

Contour Plot – Contour Options
Graph > Contour Plot > Contour Options
Use to control the number and placement of contour levels, as well as the resolution of the mesh.
Minitab establishes a series of regular x- and y-values, called a mesh, then estimates where the different contour levels will cross each rectangle of the mesh.

5 by 5 mesh

15 by 15 mesh

Note Gridlines were added for reference, but do not necessarily indicate the exact layout of the mesh used to plot the contours.

By default, if your data form a regular x-y mesh, Minitab uses this mesh to estimate the contours. Otherwise, Minitab interpolates values for a regular 15 by 15 mesh. Alternatively, you can specify the number of x- and y-values to include:

- For higher resolution, use more values.
- For lower resolution, use fewer values.
Customizing and Editing Graphs

Note Using a mesh with more and smaller intervals than exist between data points may appear to add more resolution to the image, but the added detail may not be meaningful.

Dialog box items

Contour Levels
- **Automatic**: Choose to accept the default number of contour levels.
- **Number**: Choose to specify the number of contour levels, then enter a number between 2 and 11.
- **Values**: Choose to specify the z-values to plot as contours, then enter from 2 to 11 values.

Mesh for Interpolating Surface
- **Automatic**: Choose to accept the default mesh.
- **Custom**: Choose to customize the mesh.
 - **X-Mesh Number**: Enter the number of x-values to include in the mesh.
 - **Y-Mesh Number**: Enter the number of y-values to include in the mesh.

Boundary z-value: Enter a z-value to be used at the boundaries (corners and edges) of the plot if your data do not form a regular mesh. By default, Minitab uses the minimum z-value. (If your data follow a regular mesh, this value is ignored.)

Area Graph – Options

Graph > Area Graph > Area Options
Use to switch stacking order between column order and variation order.

Dialog box items

Variable Order
- **Column order (first on top)**: Choose to stack the variables in the order they are entered in the dialog box, with the first variable you enter on top of the stack.
- **Variation order (largest on top)**: Choose to stack the variables by the degree of variation, with the variable demonstrating the largest variation on top of the stack.

3D Surface Plot – Surface Options

Graph > 3D Surface Plot > choose **Surface** or **Wireframe** > OK > Surface Options
Use to customize the grid of regular x- and y-values (mesh) that Minitab uses to calculate the surface.

![3 by 3 mesh](image1)
![4 by 5 mesh](image2)

By default, if your data form a regular x-y mesh, Minitab uses this mesh and creates the plot based on the actual z-values. Otherwise, Minitab interpolates values for a regular 15 by 15 mesh. Alternatively, you can specify the number of x- and y-values to include:
- For higher resolution, use more values.
- For lower resolution, use fewer values.

Note Using a mesh with more and smaller intervals than exist between data points may appear to add more resolution to the image, but the added detail may not be meaningful.

Dialog box items

Mesh for Interpolating Surface
- **Automatic**: Choose to accept the default mesh.
Custom: Choose to customize the mesh.
X-Mesh Number: Enter the number of x-values to include in the mesh.
Y-Mesh Number: Enter the number of y-values to include in the mesh.
Boundary z-value: Enter a z-value to be used at the boundaries (corners and edges) of the plot if your data do not form a regular mesh. By default, Minitab uses the minimum z-value. (If your data follow a regular mesh, this value is ignored.)

Layout Tool

Layout Tool
Editor > Layout Tool
Use to place multiple graphs of the same or different types on the same page. If worksheet data changes after you create a layout, you cannot update the layout to reflect the changes. After you create a layout, you can:
• Edit the individual graphs (see Example of adding annotation to a multigraph layout)

Dialog box items

Rows: Enter the number of rows for the layout.
Columns: Enter the number of columns for the layout.

> Click to add or move highlighted graph from the list box to the highlighted cell of the layout.
< Click to move highlighted graph from the layout to the list box.

Tip After you have created a layout, use the <Tab> key to cycle through and select each figure region and the graph region.

To create a layout
1 Create multiple graphs to include in the layout.
2 Choose Editor > Layout Tool.
3 In Rows, enter the number of rows for the layout.
4 In Columns, enter the number of columns for the layout.
5 To add graphs to the layout, click the cell where you want to place a graph and do one of the following:
 • In the list box, double-click a graph name.
 • In the list box, click a graph name and then click >.
 • Double-click the image of the selected item below the list box.

Note You can click and drag the graphs to change their placement in the layout.
6 Click Finish.

Example of a two-graph layout
Suppose you want to create a bar chart and time series plot for a presentation. You want both graphs to appear on the same page, so you create the graphs and then use the layout tool.

Step 1: Create the graphs
1 Open the worksheet NEWMARKET.MTW.
2 Choose Graph > Time Series Plot.
3 Choose Simple and then click OK.
4 In Series, enter SalesB. Click OK.
5 Choose Graph > Bar Chart.
6 Under Bars represent, choose Values from a table.
7 Under One column of values, choose Cluster and click OK.
8 In Graph Variables, enter SalesB.
9 In Categorical variable, enter Year. Click OK.
Customizing and Editing Graphs

Step 2: Create the layout
1. Choose Editor > Layout Tool.
2. In Rows, enter 2.
3. In Columns, enter 1.
4. In the list box, double-click Time Series Plot of Sales. (Chart of Sales already appears in the layout.)
5. Click Finish.

Graph window output

Write your answer here.

Copy Command Language

Creating Duplicate Graphs
To replicate a selected graph or control chart, use either:

- Editor > Copy Command Language – Copies the commands to the clipboard for use in a macro or in the Command Line Editor.
- Editor > Duplicate – Creates an identical copy.
- Editor > Make Similar Graph – Replaces the data in the graph; other graph characteristics are unchanged.

You might want to create duplicate graphs if you:

- Need to create several similarly annotated graphs.
- Want to keep the original copy of a graph while updating or editing a duplicate.
- Want to examine command language to create a macro.

To copy graph command language
1. Create the original graph.
2. Choose Editor > Copy Command Language.
3. The session commands used to create the graph are now copied to the clipboard. You can use the command language to create duplicate graphs in any of the following ways:
 - Choose Edit > Command Line Editor and paste from the clipboard.
 - Activate the Session window and, with command language enabled, paste from the clipboard.
 - Paste the commands into a word processing application and edit the commands to create a macro.

Example of using command language to duplicate a graph
Suppose you create a graph, then recreate it to add a grouping variable.
Step 1: Create the initial graph
1. Open the worksheet BATTERIES.MTW.
2. Choose Graph > Scatterplot.
3. Click Simple, then click OK.
5. Click Scale, then click the Reference Lines tab.
6. In Show references lines for Y positions, type 5.25. Click OK in each dialog box.
7. Choose Editor > Copy Command Language.

Note: If you copy additional information to the clipboard after step 7, you cannot perform the second part of this example. An alternative is to save the command language as a macro. For more information, see ‘Macro Terms and Overview’ in Macro Help.

Graph window output

Step 2: Recreate the graph with alterations
1. Choose Edit > Command Line Editor.
2. Delete any text in the Data window and press [Control]+[V].
3. Edit the text to match the following:
 "Plot 'FlashRecov'\'\'\'VoltsAfter';
 Reference 2 5.25;
 Symbol 'Formulation'."
4. Click Submit Commands.
Duplicate Graph

Creating Duplicate Graphs

To replicate a selected graph or control chart, use either:

- `Editor > Copy Command Language` –Copies the commands to the clipboard for use in a macro or in the Command Line Editor.
- `Editor > Duplicate` – Creates an identical copy.
- `Editor > Make Similar Graph` – Replaces the data in the graph; other graph characteristics are unchanged.

You might want to create duplicate graphs if you:

- Need to create several similarly annotated graphs.
- Want to keep the original copy of a graph while updating or editing a duplicate.
- Want to examine command language to create a macro.

To duplicate a graph

1. Create the graph to be duplicated.
2. Choose `Editor > Duplicate Graph`.

Example of creating a duplicate graph

You have just created a graph and want to edit its appearance for a presentation. You decide to create and edit a duplicate of the graph so that you can continuously compare its attributes with those of the original.

1. Open the worksheet TIREWEAR.MTW.
2. Choose `Graph > Scatterplot`.
3. Choose `Simple` and click `OK`.
5. Click `Data View`, then click the `Data Display` tab.
6. Under `Data Display`, check `Symbol` and `Project lines`. Click `OK` in each dialog box.
7. Choose `Editor > Duplicate Graph`.

Graph window output

![Scatterplot of FlashRecov vs VoltsAfter](image)

Formulation
- New
- Old

VoltsAfter

FlashRecov

0.9 1.0 1.1 1.2 1.3 1.4 1.5

4.5 5.0 5.5 6.0 6.5 7.0 7.5

5.25
Graph window output

Make Similar Graph

Make Similar Graph
You can replace any of the variables used to create a graph without changing any of its other characteristics.

Dialog box items
Role: Describes the manner in which each variable was used to create the graph.
Original Variable: Identifies the variable used originally in the given role.
New Variable: Enter a variable to replace the one used originally in the given role.

To make a similar graph
1 Open the original graph.
2 Choose Editor > Make Similar Graph.
3 Under New Variable, enter the columns that will replace the originals in the new graph. Click OK.

Example of duplicating a graph with different variables
You have created a scatterplot using pulse rates recorded prior to implementing a workout regimen. You later decide to create another graph that uses pulse rates taken after implementation. You want all attributes to be identical to the original for ease of comparison.

Step 1: Create the graph
1 Open the worksheet PULSE.MTW.
2 Choose Graph > Scatterplot.
3 Choose With Regression and click OK.
4 Under Y, enter Pulse1. Under X, enter Weight. Click OK.
Step 2: Duplicate the graph with new data

1. Choose Editor > Make Similar Graph.
2. In row 1 under New Variable, enter Pulse2. Click OK.

Graph Annotation

Duplicate Annotation

Editor > Annotation > Duplicate Annotation

Duplicating is copying and pasting in one step. You can only duplicate annotation items within a Graph window.

Duplicated items are placed 20 pixels down and 20 pixels to the right of the current item. In the graph below, an arrow was created using graph annotation tools.
Rather than recreate the arrow manually for three other points, use the **Duplicate Annotation** function, then rotate and move the arrows into place.

To duplicate annotation

1. Using the selection tool, select the annotation you want to duplicate.
2. Choose **Editor > Annotation > Duplicate Annotation**.

Bring to Front

Editor > Annotation > Bring to Front

Places the selected annotation object in a graph in front of all other overlapping annotation objects.

Annotation objects that use this command are: data labels; titles, footnotes, axis labels, tick and reference labels; markers, lines, polygons, or text created by subcommands to a graph or a layout.
To bring to front

1. Using the selection tool, select the object you want to affect.
2. Choose Editor > Annotation > Bring to Front.

Send to Back

Editor > Annotation > Send to Back

Places the selected annotation object in a graph behind all other overlapping annotation objects.

Annotation objects that use this command are: data labels; titles, footnotes, axis labels, tick and reference labels; markers, lines, polygons, or text created by subcommands to a graph or a layout.

To send to back

1. Using the selection tool, select the object you want to affect.
2. Choose Editor > Annotation > Send to Back.

Example of Bring to Front / Send to Back

You can see the effect of these commands on a selected object in the following illustrations:

<table>
<thead>
<tr>
<th>Before</th>
<th>After choosing Editor > Annotation > Send to Back</th>
</tr>
</thead>
<tbody>
<tr>
<td>Here is some text.</td>
<td>Here is some text.</td>
</tr>
</tbody>
</table>

On the left, the rectangle obscures the text string. On the right, the text is in front. Choose Editor > Annotation > Bring to Front to restore the polygon to the way it was at left.

Tip If you cannot select an object because another is in front, select the object in front, send it to the back, then select the first object. You can also choose the item from the list of selectable items on the graph tools toolbar.

Rotate Left

Editor > Annotation > Rotate Left

Rotates selected annotation objects counterclockwise. Objects rotate around their individual centers, not the center of the selection.

Note With 3D graphs, you cannot rotate text.

To rotate left

1. Using the selection tool, select the objects you want to affect.
2. Choose Editor > Annotation > Rotate Left, and choose the angle you want from the submenu: 15, 30, 45, 60, or 90 degrees.

If you want to specify an angle not on the menu, choose Other, enter a value, and click OK. See Rotate – Other.

Rotate Right

Editor > Annotation > Rotate Right

Rotates selected annotation objects clockwise. Objects rotate around their individual centers, not the center of the selection.

Note With 3D graphs, you cannot rotate text.
To rotate right

1. Using the selection tool, select the objects you want to affect.
2. Choose Editor > Annotation > Rotate Right, and choose the angle you want from the submenu: 15, 30, 45, 60, or 90 degrees.

If you want to specify an angle not on the menu, choose Other, enter a value, and click OK. See Rotate – Other.

Rotate – Other

Editor > Annotation > Rotate Left > Other
Editor > Annotation > Rotate Right > Other

Dialog box items

Angle: Enter a value between 0 and 360.

Note: With 3D graphs, you cannot rotate text.

Examples of rotating

Here are examples of ways to rotate an object:

<table>
<thead>
<tr>
<th>Initial position</th>
<th>Rotated left 60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Initial position image]</td>
<td>![Rotated left 60° image]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotated right 60°</th>
<th>Rotated left 36° (Other)</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Rotated right 60° image]</td>
<td>![Rotated left 36° (Other) image]</td>
</tr>
</tbody>
</table>

Update Graphs

Updating Graphs

Editor > Update > Update Graph Now
Editor > Update > Update Graph Automatically
Window > Update All Graphs Now

To update graphs when the data change, use either:

- **Update Graph Now** – Updates an individual graph for current data changes
- **Update Graph Automatically** – Updates the selected graph and all other graphs created with the same dialog or command whenever the worksheet changes
Customizing and Editing Graphs

- **Update All Graphs Now** – Updates all open graphs for current data changes

Graph updating is available for all graphs in the Graph menu (except Stem-and-Leaf) and all control charts. You cannot update a layout. When you change a worksheet's data and choose an updating option, Minitab updates open graphs, but not the stored results. To update stored results, rerun the analysis.

Each graph displays an icon indicating its update status.

To make a similar graph but not change the current graph, see Creating duplicate graphs.

Note Minitab only updates open graphs when automatic updating is activated. To update a saved graph or a graph created from a macro, you must resave the graph or rerun the macro. Multiple graphs created from the same command are considered a unit when using automatic updates. If one graph is deleted, the other graphs will no long be updated automatically.

Note Any default text items (titles, tick labels, etc.) you may have edited will not be updated to reflect the updated graph.

Update Status of a Graph

Each graph has an icon on the graph-window title bar indicating its update status.

<table>
<thead>
<tr>
<th>Icon color</th>
<th>Indicates the graph is...</th>
<th>Because...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Current</td>
<td>You manually updated the graph, have specified Minitab to automatically update, or haven't changed the graph data.</td>
</tr>
<tr>
<td>Yellow</td>
<td>Not current; but data have changed</td>
<td>Minitab is waiting for you to manually update the graph (see To manually update graphs).</td>
</tr>
<tr>
<td>Red</td>
<td>On hold (only available when graph is set to update automatically)</td>
<td>You are changing the data and some condition exists that prevents the update; you may have unequal column lengths or unacceptable data values. Minitab waits until the condition is resolved.</td>
</tr>
<tr>
<td>White</td>
<td>Not current, and is Ineligible for updating</td>
<td>It is part of a layout, not a core graph, or cannot otherwise be updated.</td>
</tr>
</tbody>
</table>

To continuously update graphs

1. Right-click the green square icon in the upper left corner of the graph.
2. Choose **Automatic Updates**.

Note To set a global preference to continuously update all your graphs, choose **Tools > Options > Graphics > Other Options**, and check **On creation, set graph to update automatically when data change**.

To manually update graphs

To update the active graph :

1. Choose **Editor > Update > Update Graph Now**.

To update all open graphs :

1. Choose **Window > Update All Graphs Now**.

Example of updating graphs

Suppose you created a pie chart displaying the distribution of the most common causes of air loss in tires. After creating the graph, you find more data that should have been included. This example assumes you have created the pie chart found in Example of a pie chart.

Step 1: Update the worksheet

1. In the column **Counts**, change the value in row 1 to 500. In row 6, change the value to 324.
2. Click outside the cell or click [Enter].
Step 2: Update the graph
1. Click on the graph and choose Editor > Update > Update Graph Now.

Graph window output

Example of updating a control chart with ODBC

Minitab’s automatic updating capabilities are especially useful if you utilize ODBC (Open DataBase Connectivity). In this situation, worksheet data updates regularly. As the worksheet updates, the chart also updates to reflect the addition of each new sample. In Tools > Options > Control Charts and Quality Tools, you can specify that, when an updated point in the sequence causes a new failure, the figure region turns red, alerting you immediately to the failure. The example below simulates a case in which a worksheet is updated daily.

Each day your factory receives a new shipment of materials from a supplier. One hundred samples from each shipment are selected at random and measured. Minitab creates an X-R Chart from the data. If the chart falls out of control, the shipment is rejected. For more information on this type of control chart, see Example of Xbar-R Chart.

The first day’s shipment is measured. The X-R shows no points out of control.
Because the chart will be updated regularly, it is appropriate to set the chart to update automatically. Choose **Editor > Update > Update Graph Automatically**. The following day, the worksheet data reflect the new shipment and the chart in turn updates. The chart shows no points out of control.

The third day, as the worksheet and chart are updated, the chart becomes out of control and the figure region turns red. You reject the day’s shipment.

Zoom

Editor > Zoom

Use to zoom in or out on the active graph.

Note The zoom function does not increase the true graph size; it only simulates a closer or more distant view of the active graph. If you copy or print the graph, it will reflect the graph size setting. To change the default size of the graph, see **Options – Graph Size**.

Dialog box items

Zoom to

- **200%**: Choose to view the graph at 200% its default size.
- **150%**: Choose to view the graph at 150% its default size.
- **100%**: Choose to view the graph at 100% its default size.
- **75%**: Choose to view the graph at 75% its default size.
- **50%**: Choose to view the graph at 50% its default size.

Fit window: Choose to view the graph at a size that fits the graph window.

Specify: Choose to enter a custom size (as a percentage of the original).

Graph Toolbars

Graph Editing Toolbar

Graph Editing Toolbar

Tools > Toolbars > Graph Editing

By default, this toolbar only appears when the graph window is active. To hide this toolbar, choose **Tools > Toolbars > Graph Tools**.
Graph Editing Tools

Toolbar Item Use to...

- Select a graph item for editing.
- Bring up editing dialogs for the selected item.
- Put the active graph in select mode.
- Put the active graph in brush mode.
- Put the active graph in crosshairs mode.
- Put the active DOE contour plot in plant flag mode.
- Select a graph item to add. Depending on the item, Minitab may prompt you for more information.
- Delete the selected item.
- Make the graph appear larger or smaller with the zoom option.

Edit

Edit

Editor > Edit

This menu item appears only when a Graph window is active. An editing dialog box appropriate for the selected item appears. To produce this dialog box you can:

- Double-click the graph item.
- Choose the graph item, right-click, and select **Edit**.
- Choose the graph item and choose **Editor > Edit**.

- Choose the graph item from the drop-down menu on the graph editing toolbar and click 🔍.

Select

Selecting Groups and Single Items

You can select all points on a graph, a single group, or a single point. This method can also be used to select other graph objects:

- Other data representations such as boxes on boxplots or bars on bar charts
- Data labels and slice labels (all or one)
- Text in legends and output tables (entire legend/table or one line)
- Percentile line labels (all or one)

Note Available editing options may depend on whether you have selected a group or a single item.
Click on a graph point once to select all points.

Click the point a second time to select only those points within the group.

Click a third time to select the individual point.

To select objects and text
There are three methods for selecting graph elements. Depending on the item, you may find one easier than another.

Manual selection
1. Click the selection tool on the Graph Editing toolbar.
2. Click the object on the graph.

Menu selection
1. Choose Editor > Select Item, and then choose from the list.

Toolbar selection
1. Choose the object from the Graph Editing toolbar drop-down list of editable items.
Selected objects have handles:

When you select symbols, they display two handles. See Selecting groups and single items.

Text strings have handles at vertices (corners) and at line midpoints of a rectangle that surrounds them. See Selecting groups and single items.

Unrotated rectangles, squares, ellipses, and circles have handles at vertices (corners) and at line midpoints. For circles and ellipses, the vertices and endpoints are located on a rectangle that surrounds the object.

Selected polygons have handles at each vertex.

Tip If you cannot select an object, it may be because a second object is in front of it. Select the object in front, choose Editor > Send to Back, then select the first object. See Bring to Front and Send to Back.

Brush

Brushing Overview

Graphs allow you to visualize the relationships between points. After you make a graph, you often want to learn more about a point or a group of points. Brushing allows you to do this.

Initially you may find brushing useful to:

- Show the characteristics of outliers
- Tell whether points that lie in a brushing region share other characteristics

You may come away with a much greater understanding of the data after brushing, but you may also spot critical areas in a process that need immediate attention. See Brushing Features, Description, and Summary for more information.

You may find it useful to recreate your graph without the brushed points or, conversely, with only the brushed points. See Example of subsetting based on brushed points.

<table>
<thead>
<tr>
<th>Brushing Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brushing Tool</td>
<td> A special cursor that creates a brushing region.</td>
</tr>
<tr>
<td>Brushing Region</td>
<td> Bound by a dotted line, all points that fall within this region are considered brushed.</td>
</tr>
</tbody>
</table>
Brushing Features Description and Summary

To...	**Do this...**
Enter brushing mode | Choose **Editor > Brush**.
Brush points (form a new brushing region) | 1. Move the mouse until the brushing tool 👉 appears.
2. Drag the cursor to enclose the new brushing region.
Add identifier (ID) variables to the brushing palette | 1. Choose **Editor > Set ID Variables**.
2. In **Variables**, enter the columns you want to use as identifiers.
3. Choose **Use as default for all graphs** or **Use for this graph only**.
Move an existing brushing region | 1. Place the cursor in the brushing region.
2. When 👉 appears, drag the brushing region to a different position.
Add additional points to the brushing palette | Do one of the following:
- To add points individually, [Shift]+click them.
- To add points that the brushing region passes over, while keeping the original brushed points, press [Shift] as you drag the brushing region.
Brush a single point | Click the point.
Brush across Graph windows | Brush points in one graph; the points derived from the same row are highlighted automatically in other graphs.
Select a graph point from the brushing palette | Click the row in the brushing palette.
Highlight many graph points from the brushing palette | Do one of the following:
- Drag the cursor over the rows you want to highlight.
- [Shift]+click to highlight contiguous rows.
- [Ctrl]+click to add a noncontiguous row to the current selection.
Display/hide row numbers on the brushing palette | 1. Choose **Editor > Set ID Variables**.
2. Enter a column to serve as an ID variable.
3. Check or uncheck **Include row numbers**.
Move the brushing palette | Drag the palette by the title bar.
Resize the brushing palette vertically | Drag the lower-right corner of the brushing palette as desired.
Subset based on brushed data

1. Brush the data.
2. In the data source dialog, choose Data Options.
3. Click the Subset tab.
4. Choose the appropriate options to include or exclude the brushed points.

Display/hide the brushing palette

Choose Editor > Show/Hide the Brushing Palette.

Brush

Editor > Brush

Available only when a Graph window is active. Choosing Editor > Brush puts the graph in brushing mode. Changing worksheet data pertinent to the graph and choosing any of the Editor > Update options takes the graph out of brushing mode. You cannot brush graphs in which:

- Data are not represented with symbols
- A symbol represents a single value in the worksheet
- Points are based on a calculation involving more than one row, as in histograms, bar charts, boxplots, or pie charts
- Worksheet data have changed and the graph has not been updated. Conversely, a brushing region is removed if worksheet data change.

When you brush points in one graph, Minitab automatically brushes points from the same row that appear in other graphs. This is true whether the graphs appear in the same Graph window or in other Graph windows. Brushing across graphs can help you quickly see visual relationships across many variables.

Example of exploring data with brushing

Suppose you want to look at the effects of several variables on blood pressure. After making three scatterplots, you brush points of interest to examine them in the context of each graph and set ID variables to learn more about these points.

Step 1: Create the Graphs

1. Open the worksheet PERU.MTW.
2. Choose Graph > Scatterplot > Simple > OK.
3. In the first row of Y variables, enter Pulse; in X variables, enter Years.
4. In the second row of Y variables, enter Systol; in X variables, enter Diastol. Click OK.
5. Choose Graph > Scatterplot > With Regression > OK.
6. In Y variables, enter Pulse; in X variables, enter Height. Click OK.

Step 2: Brush the outliers

In the first graph, two points are much higher on the Years scale than the rest. You want to see whether these two points are outliers in different graphs.

1. Choose Editor > Brush.
2. Drag the cursor to create a brushing region around those two points.
The brushing palette shows that rows 38 and 39 are associated with those points. Look at rows 38 and 39 in the Data window to see the values of other variables for these individuals.

Points in the other graphs that have the same row number are also brushed, allowing you to compare different characteristics visually. In the second graph, you see that neither of the brushed points appear to be outliers.

Step 3: Set ID variables

In the first two graphs, two points are much higher on the Years scale than the rest. You want to get more information on these two points.

1. Choose Editor > Set ID Variables.
2. Enter Age, Weight, Height, and Systol. Click OK.
With the added ID variables in the brushing window you can see information related to the brushed points not otherwise expressed in the graph. In the third graph, the brushed point near the regression line shows a subject with a height and weight that are very close to the general relationship between height and weight. Another subject (the second brushed point) is quite overweight which may contribute to his high pulse rate. Further exploration may reveal more about the cause of this subject's high pulse rate.

To start brushing

1. Make the graph window active.
2. Choose **Editor > Brush**.
3. Drag the cursor over the points in the graph.

Show/Hide Brushing Palette

Editor > Show/Hide Brushing Palette

Displays or hides the brushing palette when an active Graph window is in Graph Brushing mode. You can enter the brushing mode when a Graph window is active by choosing **Editor > Brush**.

Set Brushing Color

Tools > Options > Graphics > Data View > Symbol

When points are highlighted in the brushing region, they use the brushing color. The brushing color is kept from session to session and can only be changed as a default preference. See Options - Symbol Data View.

Note The original brushing color is dissimilar to the default colors used in representing different grouping variables. If you choose a new brushing color, be sure that it is easily distinguished from others in the graph.

Create Indicator Variable

Editor > Create Indicator Variable

Use to create a column in the Data window called an **indicator variable** that identifies brushed rows with a column of data. If a row is currently brushed, the cell in that row of the indicator variable column has a value of 1. If a row is not
brushed, the cell has a value of 0. The contents of the column change dynamically as you move the brushing region on
the graph. You can choose to update this indicator column automatically or manually.

You can use the indicator variable to explore the data in different ways. For example, you can:

• Subset the data based on brushed points.
• Calculate descriptive statistics separately for the brushed and unbrushed points.
• Perform a regression analysis, omitting the brushed points.

Dialog Box Items

Column: Enter the column where the indicator values will be stored.

Code brushed points as zero: Check this box to set brushed rows to 0, and nonbrushed rows to 1. If unchecked, brushed
rows are set to 1 and nonbrushed rows are set to 0.

Update now: Select this option to change the values in the indicator variable to reflect the currently brushed set.

Update now and whenever the brushed set changes: Select this option to change the values in the indicator
variable every time you move or change the brushing region.

To create an indicator variable based on brushed points
1 Brush points of interest on the graph.
2 Choose **Editor > Create Indicator Variable**.
3 In **Column**, enter a column to hold the indicator values.
4 Check **Code brushed points as zero** to set brushed rows to 0, and non-brushed rows to 1. If unchecked, brushed
rows are set to 1 and non-brushed rows are set to 0.
5 Do one of the following:
 • Choose **Update now** to update the indicator column to reflect the points that are currently brushed and then freeze
 these values.
 • Choose **Update now and whenever the brushed set changes** to change the values in the indicator variable
every time you move or change the brushing region.
6 Click **OK**.

Set ID Variables

Editor > Set ID Variables
This dialog box allows you to add more information to the brushing palette for each brushed point, and to use the added
ID variables for all graphs or just the active graph.

Dialog Box Items :

Variables: Enter columns that will serve as ID variables. The brushing palette shows the added columns for each brushed
point.

Use as default for all graphs using this worksheet: Choose to display the ID variables entered in **Variables** when
brushing any graph created with the current worksheet.

Use for this graph only: Choose to display the ID variables entered in **Variables** when brushing the active graph only.
The active graph will not be affected if you check **Use as the default for all graphs using this worksheet** later in the
session.

Include row numbers: Check to show the row number of the brushed point, which is useful for locating the point in the
Data window.
Note To change the ID variables for another graph, make the Graph window active and choose Editor > Set ID Variables, then changing the settings.

To add or change ID variables in the brushing palette
1. Choose Editor > Set ID Variables.
2. In Variables, enter the columns that will be represented in the brushing palette.
3. Do one of the following:
 - Choose Use as default for all graphs using this worksheet to display the ID variables entered in Variables when brushing any graph created with the current worksheet.
 - Choose Use for this graph only to display the ID variables entered in Variables when brushing the active graph only. The active graph will not be affected if you use Use as the default for all graphs using this worksheet later in the session.
4. Check or uncheck Include row numbers to show or hide row numbers in the brushing palette, and click OK.

Crosshairs
Crosshairs
Editor > Crosshairs
Allows you to place crosshairs anywhere on the data region of a graph and shows you the x,y coordinates of that point. Useful in exploring data without gridlines or reference lines, and in placing annotation items.

To use crosshairs
1. Create a graph with a two-variable data region.
2. Choose Editor > Crosshairs, or click in the Graph Editing toolbar.
3. Position the crosshairs on the data region of the graph.

Example of crosshairs
Suppose you create a large scatterplot of weight and height data. Creating enough reference lines to identify the coordinates of each point would clutter the graph, so you opt to use crosshairs.
1. Open the worksheet PERU.MTW.
2. Choose Graph > Scatterplot.
3. Choose Simple, then click OK.
4. In Y variables, enter Height; in X variables, enter Weight. Click OK.
5. Choose Editor > Crosshairs, or click on the Graph Editing toolbar.
6. Place the crosshairs over a point of interest. The coordinates of the crosshairs appear in the upper left corner of the graph.
Graph window output

Interpreting the results
You now know the precise coordinates of the point in question. The crosshairs also help you visualize the number of points above and below the selected point on both axes. After exploring the data in this manner, you may choose to add reference lines.

Plant Flag

Planting Flags
Editor > Plant Flag
Allows you to display the x and y values as well as the exact z value of any point on a factorial, response surface, or mixture contour plot.

To plant flags
1. Create a factorial, response surface, or mixture contour plot.
2. Choose Editor > Plant Flag.
3. Position the crosshairs on the point of interest in the data region. Click and drag the mouse to the location for the flag label to appear.

Example of planting flags
Suppose you have created a response surface contour plot of yield data from a recent soybean crop. You want to know the exact z-values of certain points.

Step 1: Create the graph
1. Open the worksheet CCD_EX1.MTW.
3. Check Contour plot and click Setup.
4. Click OK in each dialog box.

Step 2: Plant the flag
1. Choose Editor > Plant Flag.
2. Position the crosshairs on the point of interest in the data region. Click and drag the mouse to the location for the flag label to appear.
Edit Planted Flag – Attributes

Select flag > Editor > Edit > Attributes

Use to control the background fill and border attributes of the flag label.

Dialog box items

Fill Pattern
- **Automatic**: Choose to accept the default fill pattern.
- **Custom**: Choose change the default fill pattern.
 - **Type**: Choose a fill type.
 - **Background color**: Choose a background color.

Borders and Fill Lines
- **Automatic**: Choose to accept the default border and fill lines.
- **Custom**: Choose to change the default border and fill lines.
 - **Type**: Choose a border line type.
 - **Color**: Choose a border and fill line color.
 - **Size**: Choose a border line thickness.

To edit planted flag attributes

1. Double-click the flag.
2. Click the **Attributes** tab.
3. Under **Fill Pattern**, choose one of the following:
 - **Automatic** to accept the default fill pattern.
 - **Custom** to change the default fill pattern.
 - From **Type**, choose a fill type.
 - From **Background color**, choose a background color.
4. Under **Borders and Fill Lines**, choose one of the following:
 - **Automatic** to accept the default border and fill lines.
Customizing and Editing Graphs

- **Custom** to change the default border and fill lines.
 - From **Type**, choose a border line type
 - From **Color**, choose a border and fill line color.
 - From **Size**, choose a border line thickness.

5 Click **OK**.

Edit Planted Flag – Font

Select flag > Editor > Edit Flag > Font

Specify the font, style, size, and color of flag labels.

Dialog box items

Font: Choose a font.

Style
- **Bold:** Check to make the text bold.
- **Italic:** Check to italicize the text.
- **Underline:** Check to underline the text.

Size: Enter a font size.

Color: Choose a text color.

Preview: Displays sample text with the selected attributes. This box does not accept input.

To edit planted flag font
1 Double-click the flag.
2 Click the **Font** tab.
3 To change font attributes, do any of the following:
 - Under **Font**, type a font name or choose one from the list.
 - Under **Style**, check **Bold**, **Italic**, and/or **Underline**.
 - Under **Size**, type a font size or choose one from the list.
 - Under **Color**, choose a text color.
4 Click **OK**.

Example of editing a planted flag

Suppose you have planted a flag on a contour plot and decide to change its appearance. This example assumes you have created the contour plot and flag in Example of planting flags.

1 Double-click the flag.
2 Click **Attributes**.
3 Under **Borders and Fill Lines**, choose **Custom**.
4 Under **Color**, choose ⬇️
5 Under **Size**, choose **2**.
6 Click **Font**.
7 Under **Font**, choose **Times New Roman**.
8 Under **Size**, choose **10**.
9 Under **Color**, choose ⬇️ Click **OK**.
Graph Editing Tools

Graph window output

Contour Plot of BeanYield vs PhosAcid, Nitrogen

Add

Adding Graph Elements

Editor > Add

You can add graph elements to the active graph. The elements that can be added are determined by the graph. To remove graph items, see Deleting a Graph Element. You can add the following elements:

<table>
<thead>
<tr>
<th>Scale</th>
<th>Labels</th>
<th>Data fits</th>
<th>Data display</th>
<th>Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td>Title</td>
<td>Distribution Fit</td>
<td>Scatterplot, Matrix Plot</td>
<td>Legend</td>
</tr>
<tr>
<td>Gridline</td>
<td>Subtitle</td>
<td>Regression Fit</td>
<td>Histogram</td>
<td>Table</td>
</tr>
<tr>
<td>Reference Lines</td>
<td>Footnote</td>
<td>Smoother</td>
<td>Boxplot</td>
<td></td>
</tr>
<tr>
<td>Percentile Lines</td>
<td>Data Labels</td>
<td>Calculated Line</td>
<td>Probability Plot</td>
<td></td>
</tr>
<tr>
<td>Axis Labels</td>
<td>Slices</td>
<td>Calculated Line</td>
<td>Empirical CDF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Default Title</td>
<td></td>
<td>Interval Plot, Individual Value Plot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Default Subtitle</td>
<td></td>
<td>Bar Chart</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Default Footnote</td>
<td></td>
<td>Time Series Plot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contour Plot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3D Scatterplot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3D Surface Plot</td>
<td></td>
</tr>
</tbody>
</table>

To add a graph element

With the menu bar:

1. Choose Editor > Add.
2. Choose the item you wish to add.
3. Depending on the item, you may be prompted to provide more information. Do so and click OK.
Customizing and Editing Graphs

With the right-click menu:
1. Right-click the graph.
2. Choose Add and select the item you wish to add.
3. Depending on the item, you may be prompted to provide more information. Do so and click OK.

With the graph editing toolbar:
1. Select an item from the drop down list of addable elements.
2. Depending on the item, you may be prompted to provide more information. Do so and click OK.

Data Display
Add Data Display – 3D Scatterplot
Editor > Add > Data Display
Use to add or remove data display types from the active graph.
Dialog box items

Data Display
Symbols: Check to represent each data point with a symbol.
Project lines: Check to display lines that project from each data point to its base.

Apply same groups of current displays to added displays: Check to use the same attribute grouping variables for the added displays as are used for the current displays.

Add Data Display – 3D Surface Plot
Editor > Add > Data Display
Use to add or remove data display types from the active graph.
Dialog box items

Data Display
Surface: Check to display a continuous surface of z-values (surface plot) or a grid of z-values (wireframe plot) that is fit to your data.
Symbols: Check to represent each data point with a symbol.
Project lines: Check to display lines that project from each data point to its base.

Add Data Display – Bar Chart
Editor > Add > Data Display
Use to add or remove data display types from the active graph.
Dialog box items

Data Display
Bars: Check to display bars that join each data value to its base.
Symbols: Check to represent each data value with a symbol.
Connect line: Check to connect the data values.
Project lines: Check to display lines that project from each data point to its base.

Apply attribute assignment variables of current displays to added displays: Check to use the same attribute grouping variables for the added displays as are used for the current displays.

Add Data Display – Boxplot
Editor > Add > Data Display
Use to add or remove data display types from the active graph.
Dialog box items

Data Display
Median confidence interval box: Check to display a confidence interval box, which shows the 95% (default) confidence interval for the median.
Interquartile range box: Check to display an interquartile range box (default). The box bottom is at the 25th percentile and box top at the 75th percentile.

Range box: Check to display a box that extends from the minimum data value to the maximum data value.

Outlier symbols: Check to represent each outlier with a symbol.

Individual symbols: Check to represent each data point with a symbol.

Median symbol: Check to represent each median with a symbol.

Median connect line: Check to connect the medians of grouped plots (only visible if you have categorical variables in the boxplot).

Mean symbol: Check to represent each mean with a symbol.

Mean connect line: Check to connect the means of grouped plots (only visible if you have categorical variables in the boxplot).

Apply attribute assignment variables of current displays to added displays: Check to use the same attribute grouping variables for the added displays as are used for the current displays.

Add Data Display – Contour Plot

Editor > Add > Data Display

Use to add or remove data display types from the active graph.

Dialog box items

Data Display

- **Area:** Check to shade the areas between contours.
- **Contour lines:** Check to draw contour lines.
- **Symbols:** Check to represent each x-y data point with a symbol.

Add Data Display – Empirical CDF

Editor > Add > Data Display

Use to add or remove data display types from the active graph.

Dialog box items

Data Display

- **Connect line:** Choose to connect the data points.
- **Distribution fit:** Choose to fit a distribution to the data.

Add Data Display – Histogram

Editor > Add > Data Display

Use to add or remove data display types from the active graph.

Dialog box items

Data Display

- **Bars:** Check to display bars that join each data value to its base. By default, the height of each bar is equal to the frequency of the interval it represents.
- **Symbols:** Check to represent each data value with a symbol.
- **Project lines:** Check to display lines that project from each data point to its base.
- **Area:** Check to draw a histogram with an outline of the bars (only visible if you uncheck **Bars**).

Add Data Display – Interval Plot, Individual Value Plot

Editor > Add > Data Display

Use to add or remove data display types from the active graph.

Dialog box items

Data Display

- **Interval bar:** Check to display a confidence interval bar. The default confidence level is 95%.
- **Bar:** Check to display bars that join each mean to its base.
Customizing and Editing Graphs

- **Individual symbols**: Check to represent each data point with a symbol.
- **Mean symbol**: Check to represent each mean with a symbol.
- **Mean connect line**: Check to connect the means of grouped plots (only visible if you have categorical variables in the plot).
- **Median symbol**: Check to represent each median with a symbol.
- **Median connect line**: Check to connect the medians of grouped plots (only visible if you have categorical variables in the plot).
- **Apply attribute assignment variables of current displays to added displays**: Check to use the same attribute grouping variables for the added displays as are used for the current displays.

Add Data Display – Probability Plot

Editor > Add > Data Display

Use to add or remove data display types from the active graph.

Dialog box items

Data Display

- **Symbols only**: Check to represent each data value with a symbol.
- **Distribution fit**: Choose to fit a distribution to the data.

Add Data Display – Scatterplot, Matrix Plot

Editor > Add > Data Display

Use to add or remove data display types from the active graph.

Dialog box items

Data Display

- **Symbols**: Check to represent each data point with a symbol.
- **Connect line**: Check to connect the data points.
- **Project lines**: Check to display lines that project from each data point to its base.
- **Area**: Check to shade the area below the data points to their base.

Apply same groups of current displays to added displays: Check to use the same attribute grouping variables for the added displays as are used for the current displays.

Add Data Display – Time Series Plot

Editor > Add > Data Display

Use to add or remove data display types from the active graph.

Dialog box items

Data Display

- **Symbols**: Check to represent each data point with a symbol.
- **Connect line**: Check to connect the data points.
- **Project lines**: Check to display lines that project from each data point to its base.

Apply same groups of current displays to added displays: Check to use the same attribute grouping variables for the added displays as are used for the current displays.

To add data display items

1. Choose *Editor > Add > Data Display*.
2. In *Data Display*, check the items you wish to add, then click *OK*.
Data Fits

Add Distribution Fit

Editor > Add > Distribution Fit

Use to fit a distribution to your data to help you determine whether the data can be adequately modeled by the selected distribution.

After creating a graph, you can change the fitted distribution, add groups, and change the fitted line attributes (see Editing Data Fits Overview).

Dialog box items

- **Distribution**: Choose a distribution.
- **Historical parameters**: Enter historical estimates of the distribution parameters. Minitab displays the necessary parameters, which depend on the chosen distribution. These parameters may include **Mean**, **Standard Deviation**, **Location**, **Shape**, **Scale**, or **Threshold**. If you do not enter historical estimates, Minitab estimates the parameters from the data. You can enter some historical estimates and have Minitab estimate the other parameters. See Distribution parameters for restrictions.

To add a distribution fit

1. Do one of the following:
 - Click on the graph editing toolbar and choose Distribution Fit from the Add List.
 - Right-click the active graph and choose Add > Distribution Fit.
 - Choose Editor > Add > Distribution Fit.
2. From **Distribution**, choose a distribution.
3. In **Historical parameters**, enter historical estimates of the distribution parameters. Minitab displays the necessary parameters, which depend on the chosen distribution. These parameters may include **Mean**, **Standard Deviation**, **Location**, **Shape**, **Scale**, or **Threshold**. If you do not enter historical estimates, Minitab estimates the parameters from the data. You can enter some historical estimates and have Minitab estimate the other parameters. See Distribution parameters for restrictions.
4. Click **OK**.

Add Lowess Smoother

Editor > Add > Smoother

Use to add a lowess smoother to an active scatterplot, matrix plot, histogram, or time series plot. You can use a lowess smoother to explore the relationship between two variables without fitting a specific model.

After creating a graph, you can change the lowess smoothing parameters, add groups, and change the fitted line attributes (see Editing Data Fits Overview).

Dialog box items

- **Lowess Smoothing Parameters**
 - **Degree of smoothing**: Enter a number between 0 and 1 for the fraction (f) of the total number of points to use to calculate the fitted values at each x-value. The default is 0.5. See Specifying lowess smoothing parameters.
 - **Number of steps**: Enter a number from 0 to 10 to specify the number of iterations of smoothing to use to limit the influence of outliers. Each step reduces the weight given to outliers in the next iteration. The default is 2. See Specifying lowess smoothing parameters.

Apply same groups of current displays to lowess smoother: Check to use the same grouping variables for the fitted line as are used for all other data displays.

To add a lowess smoother

1. Do one of the following:
 - Click on the graph editing toolbar and choose Smoother from the Add List.
 - Right-click the active graph and choose Add > Smoother.
 - Choose Editor > Add > Smoother.
2. Under **Lowess Smoothing Parameters**, if you like, do one or both of the following:
 - In **Degree of smoothing**, enter a number between 0 and 1 for the fraction (f) of the total number of points to use to calculate the fitted values at each x-value. The default is 0.5. See Specifying lowess smoothing parameters.
 - In **Number of steps**, enter a number from 0 to 10 to specify the number of iterations of smoothing used to limit the influence of outliers. Each step reduces the weight given to outliers in the next iteration. The default is 2.
Customizing and Editing Graphs

See Specifying Lowess Smoothing Parameters for details.

3 To use the same grouping variables for the fitted line as is used for all other data displays, check **Apply same groups of current displays to lowess smoother.**

4 Click **OK.**

Add Regression Fit

Editor > Add > Regression Fit

Use to add a least squares regression line to an active scatterplot or matrix plot. Use the regression fit to examine the relationship between the response variable (y) and the predictor variable (x). If you hover the mouse pointer over the fitted line, Minitab displays the fitted regression equation. After creating a graph, you can change the model order for the regression fit, add groups, or change the fitted line attributes (see Editing Data Fits Overview).

Dialog box items

Model Order

- **Linear:** Choose to fit a linear model.
- **Quadratic:** Choose to fit a quadratic model.
- **Cubic:** Choose to fit a cubic model.

Fit intercept: Check to fit a constant term (the y-intercept of the regression line). Uncheck to fit the model without a constant term.

Apply same groups of current displays to regression fit: Check to use the same grouping variables for the fitted line as are used for all other data displays.

To add a regression fit

1 Do one of the following:
 - Click on the graph editing toolbar and choose **Regression fit** from the Add List.
 - Right-click the active graph and choose **Add > Regression Fit.**
 - Choose **Editor > Add > Regression Fit.**

2 Under **Model Order,** choose **Linear,** **Quadratic,** or **Cubic,** based on the model you want to fit.

3 Check or uncheck **Fit intercept,** to include or exclude the intercept (constant) in the model. If you uncheck **Fit intercept,** the regression line passes through the origin ($x = 0, y = 0$)

4 To use the same grouping variables for the fitted line as is used for all other data displays, check **Apply same groups of current displays to regression fit.**

5 Click **OK.**

Labels

Add Title

Editor > Add > Title

Use to add a title to the active graph. After adding a title, you can change its attributes and alignment (see Editing Labels Overview).

Dialog box item

Title: Type a title, which appears below Minitab’s default title.

To add a title

1 Choose **Editor > Add > Title.** (You can also use the graph editing toolbar or the right-click menu.)
 - Click on the graph editing toolbar and choose **Title** from the Add list.
 - Right-click the active graph and choose **Add > Title.**
 - Choose **Editor > Add > Title.**

2 In **Title,** type a title, which appears below Minitab’s default title.

3 Click **OK.**
Add Subtitle
Editor > Add > Subtitle
Use to add a subtitle to the active graph. After adding a subtitle, you can change its attributes and alignment (see Editing Labels Overview).

Dialog box item
Subtitle: Type a subtitle, which appears below any default titles and default sub-titles.

To add a subtitle
1 Do one of the following:
 • Click on the graph editing toolbar and choose Subtitle from the Add List.
 • Right-click the active graph and choose Add > Subtitle.
 • Choose Editor > Add > Subtitle.
2 In Subtitle, type a subtitle, which appears below any default titles and default sub-titles.
3 Click OK.

Add Footnote
Editor > Add > Footnote
Use to add a footnote to the active graph. After adding a footnote, you can change its attributes and alignment (see Editing Labels Overview).

Dialog box item
Footnote: Type a footnote, which appears at the bottom left of the graph. Each additional footnote goes below the preceding footnote.

To add a footnote
1 Do one of the following:
 • Click on the graph editing toolbar and choose Footnote from the Add List.
 • Right-click the active graph and choose Add > Footnote.
 • Choose Editor > Add > Footnote.
2 In Footnote, type a footnote, which appears at the bottom left of the graph. Each additional footnote goes below the preceding footnote.
3 Click OK.

Add Text
Use to add text to the active graph.

Dialog box item
Text: Enter the text.

To add text
1 In the Graph Annotation Tools toolbar, click .
2 Place the crosshairs at the point on the graph where you want one corner of the text box.
3 Click and drag the crosshairs to the opposite corner of the text box and release the mouse.
4 In Text, type the text. Click OK.

Add Data Labels
Editor > Add > Data Labels
Use to label each data point on the active graph. After adding data labels, you can change their attributes, alignment, and type (see Editing Labels Overview).
Dialog box items

Label Type

- **Use y-value labels**: Choose to label each point with its y-axis value.
- **Use row numbers**: Choose to label each point with its worksheet row number. You cannot label histograms or bar charts with row numbers.
- **Use labels from column**: Choose to label points with values stored in a column. Enter a text, numeric, or date/time column that contains the data labels.

If graph data match worksheet rows, as for scatterplot, Minitab matches the label column to the data column by worksheet row number. If graph data are summaries of worksheet values, as for histogram and bar chart, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

To add data labels

1. Do one of the following:
 - Click on the graph editing toolbar and choose Data Labels from the Add List.
 - Right-click the active graph and choose Add > Data Labels.
 - Choose Editor > Add > Data Labels.

2. Choose one of the following:
 - **Use y-value labels** to label each point with its y-axis value.
 - **Use row numbers** to label each point with its worksheet row number. You cannot label medians or means with row numbers.
 - **Use labels from column** to label points with values stored in a column. Then, enter a text, numeric, or date/time column that contains the data labels.

 If graph data match worksheet rows, as for scatterplot, Minitab matches the label column to the data column by worksheet row number. If graph data are summaries of worksheet values, as for histogram and bar chart, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

3. Click **OK**.

Add Data Labels – Boxplot

Editor > Add > Data Labels > Outliers, Individual Data, Medians, or Means

Use to label outliers, individual data points, medians, or means on the active graph. After adding data labels, you can change their attributes, alignment, and type (see Editing Labels Overview).

Dialog box items

Label Type

- **None**: Choose to suppress data labels.
- **Use y-value labels**: Choose to label each point with its y-axis value.
- **Use row numbers**: Choose to label each point with its worksheet row number. You cannot label medians or means with row numbers.
- **Use labels from column**: Choose to label points with values stored in a column. Enter a text, numeric, or date/time column that contains the data labels.

For outliers, Minitab assigns labels from worksheet rows representing the outliers. For individual data labels, Minitab matches the label column to the data column by worksheet row number. For median and mean labels, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

To add data labels to a boxplot

1. Do one of the following:
 - Click on the graph editing toolbar and choose Data Labels from the Add List.
 - Right-click the active graph and choose Add > Data Labels.
 - Choose Editor > Add > Data Labels.

2. Click the **Outliers, Individual Data, Medians, or Means** tab.

3. Choose one of the following:
• **Use y-value labels** to label each point with its y-axis value.
• **Use row numbers** to label each point with its worksheet row number. You cannot label medians or means with row numbers.
• **Use labels from column** to label points with values stored in a column. Then, enter a text, numeric, or date/time column that contains the data labels.

For outliers, Minitab assigns labels from worksheet rows representing the outliers. For individual data labels, Minitab matches the label column to the data column by worksheet row number. For median and mean labels, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

4 Click **OK**.

Add Data Labels – Interval Plot, Individual Value Plot

Editor > Add > Data Labels > Individual Data, Interval Endpoints, Means, or Medians

Use to label individual data points, interval endpoints, means, or medians on an active interval plot or individual value plot.

After adding data labels, you can change their attributes, alignment, and type (see Editing Labels Overview).

Dialog box items

Label Type

- **None**: Choose to suppress data labels.
- **Use y-value labels**: Choose to label each point with its y-axis value.
- **Use row numbers**: Choose to label each point with its worksheet row number. You cannot label interval endpoints, means, or medians with row numbers.
- **Use labels from column**: Choose to label points with values stored in a column. Enter a text, numeric, or date/time column that contains the data labels.

For individual data labels, Minitab matches the label column to the data column by worksheet row number. For interval endpoint, mean, and median labels, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

To add data labels to an interval plot

1 Do one of the following:
 - Click **on** the graph editing toolbar and choose **Data Labels** from the Add List.
 - Right-click the active graph and choose **Add > Data Labels**.
 - Choose **Editor > Add > Data Labels**.
2 Click the **Individual Data, Interval Endpoints, Means, or Medians** tab.
3 Choose one of the following:
 - **Use y-value labels** to label each point with its y-axis value.
 - **Use row numbers** to label each point with its worksheet row number. You cannot label interval endpoints, means, or medians with row numbers.
 - **Use labels from column** to label points with values stored in a column. Enter a text, numeric, or date/time column that contains the data labels.

For individual data labels, Minitab matches the label column to the data column by worksheet row number. For interval endpoint, mean, and median labels, the label column order is left-to-right on the graph. If the label column contains more values than are needed, Minitab ignores the extra labels. If the label column contains less values than are needed, the remaining data values are not labeled.

4 Click **OK**.

Scale

Add Reference Lines

Editor > Add > Reference Lines

Choose to display reference lines. By default, Minitab displays labels for each reference line drawn. Customize reference lines using scale editing.
Dialog box items

Show reference lines for Z positions: Enter the position for z-scale reference lines to be drawn. Only available with 3D graphs.

Show reference lines for Y positions: Enter the position for y-scale reference lines to be drawn.

Show reference lines at Y (value scale) positions: Enter the position for value-scale reference lines to be drawn. Only available with categorical graphs.

Show reference lines for X positions: Enter the position for x-scale reference lines to be drawn.

Show reference lines at X (category scale positions): Enter the position for categorical-scale reference lines to be drawn. Values that do not correspond with a categorical value will not be labeled. Only available with categorical graphs.

To add reference lines
1. Choose Editor > Add > Reference Lines.
2. In Show reference lines for Y positions, enter the y-scale positions where you want to display reference lines.
3. In Show reference lines for X positions, enter the x-scale positions where you want to display reference lines.
4. Click OK.

Add Percentile Lines
Editor > Add > Percentile Lines

Choose to display percentile lines. By default, Minitab displays labels for each percentile line drawn. Customize a percentile line using scale editing.

Dialog box items

Percentile Lines

At Y values: Enter the y-values, either in percent, probability, or score, where you want the line to be drawn. When entering multiple percentiles, leave a space between each entry.

At data values: Enter the data value where you want the line to be drawn. When entering multiple values, leave a space between each entry.

To display percentile lines
1. Choose Editor > Add > Percentile Lines.
2. Under Percentile Lines, choose At Y values or At data values and enter the y-values (percentiles, probabilities, or scores) or data values where you want lines drawn. When entering multiple percentiles, leave a space between each entry.
3. If you like, use any dialog box options, then click OK.

Add gridlines
Editor > Add > Gridlines

Use to add gridlines to the active graph. Not all items are available with all graphs.

Dialog box item

Show gridlines for: Check to add gridlines at the specified locations.

- Z major ticks
- Z minor ticks
- Y major ticks
- Y minor ticks
- X major ticks
- X minor ticks

Note: If the active graph has both primary and secondary scales, this dialog allows you to add gridlines by scale as well as axis.

To add gridlines
1. Choose Editor > Add > Gridlines.
2 In Show gridlines for, check the items you wish to add, then click OK.

Add Calculated Line
Editor > Add > Calculated Line
After you create a graph, you can add a line that is produced by the connection of calculated y- and x-coordinates. Do this to see how the experimental points match with a theory based on a function or some other formula.

Dialog box items
Coordinates
 Y column: Enter the column containing the calculated y-coordinates of theoretical values.
 X column: Enter the column containing the calculated x-coordinates of theoretical values.

To add a calculated line
1 Choose Editor > Add > Calculated Line.
2 In Y column, enter the column that contains the y-coordinates for the line.
3 In X column, enter the column that contains the x-coordinates for the line. Click OK.

Delete
Deleting a Graph Element
Use one of the following methods to delete items from your graphs:
- Right-click the graph item and choose Delete.
- Select the item and click on the graph toolbar.
- Select the item and press [Delete].

To add graph items, see Adding a Graph Element.

To delete a graph element
1 Select the item you wish to delete.
2 Do one of the following:
 - Right-click on the graph item and choose Delete.
 - Click on the graph toolbar.
 - Press [Delete].

Zoom
Zoom
Editor > Zoom
Use to zoom in or out on the active graph.

Note The zoom function does not increase the true graph size; it only simulates a closer or more distant view of the active graph. If you copy or print the graph, it will reflect the graph size setting. To change the default size of the graph, see Options – Graph Size.

Dialog box items
Zoom to
 200%: Choose to view the graph at 200% its default size.
 150%: Choose to view the graph at 150% its default size.
 100%: Choose to view the graph at 100% its default size.
 75%: Choose to view the graph at 75% its default size.
 50%: Choose to view the graph at 50% its default size.
 Fit window: Choose to view the graph at a size that fits the graph window.
 Specify: Choose to enter a custom size (as a percentage of the original).
Customizing and Editing Graphs

3D Graph Tools Toolbar

3D Graph Tools Toolbar
Tools > Toolbars > 3D Graph Tools
Use this toolbar to rotate 3D graphs and 3D surface plot lighting and to resize the data region. By default, this toolbar only appears when a 3D scatterplot, 3D surface plot, or 3D wireframe plot is active. To hide this toolbar, choose Tools > Toolbars > 3D Graph Tools.

<table>
<thead>
<tr>
<th>Toolbar item</th>
<th>Use to...</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td>Rotate the graph clockwise or counterclockwise about the x-axis.</td>
</tr>
<tr>
<td> </td>
<td>Rotate the graph clockwise or counterclockwise about the y-axis.</td>
</tr>
<tr>
<td> </td>
<td>Rotate the graph clockwise or counterclockwise about the z-axis.</td>
</tr>
<tr>
<td> </td>
<td>Rotate all 3D surface plot lighting clockwise or counterclockwise about the x-axis. For additional lighting controls, see Edit Surface – Lights.</td>
</tr>
<tr>
<td> </td>
<td>Rotate all 3D surface plot lighting clockwise or counterclockwise about the y-axis.</td>
</tr>
<tr>
<td> </td>
<td>Rotate all 3D surface plot lighting clockwise or counterclockwise about the z-axis.</td>
</tr>
<tr>
<td> </td>
<td>Increase or decrease the size of the 3D box. (To zoom the graph window in or out, choose Editor > Zoom.)</td>
</tr>
<tr>
<td> </td>
<td>Return the graph to its original position and zoom.</td>
</tr>
<tr>
<td> </td>
<td>Return all lights to their original positions. Also returns other surface lighting options, except brightness, to their original settings.</td>
</tr>
</tbody>
</table>

Tip
When rotating a graph or graph lighting, click to rotate in small increments; click and hold for continuous rotation.

To rotate a 3D graph
1 Activate the window containing the graph you want to rotate.
2 Click the appropriate axis rotation buttons (circled below) on the 3D Graph Tools toolbar to rotate the graph in small increments. Click and hold for continuous rotation. (To show or hide this toolbar, choose Tools > Toolbars > 3D Graph Tools.)

To rotate 3D surface plot lighting
1 Activate the window containing the 3d surface plot.
2 Click the lighting rotation buttons (circled below) on the 3D Graph Tools toolbar to rotate the lights a few degrees about the indicated axis. Click and hold to rotate more quickly. (To show or hide this toolbar, choose Tools > Toolbars > 3D Graph Tools.)

While the lights are rotating, their position and color are indicated by large dots, as illustrated below. If the lights are not visible when rotating, try zooming out by clicking ![zoom](image). To reset lights to their original positions, press ![home](image).
More To control the number and brightness of the lights, or to control the position and color of individual lights, see Edit Surface – Lights.

Graph Annotation Tools Toolbar

Graph Annotation Tools Toolbar

Tools > Toolbars > Graph Annotation Tools

Use the graph annotation tools to add objects such as lines, rectangles, and text to a graph. By default, this toolbar only appears when the Graph window is active. To hide this toolbar, choose Tools > Toolbars > Graph Annotation Tools.

<table>
<thead>
<tr>
<th>Toolbar item</th>
<th>Use to...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Put the graph in select mode or deselect a selected object.</td>
</tr>
<tr>
<td>T</td>
<td>Add text to a graph.</td>
</tr>
<tr>
<td>□</td>
<td>Draw rectangles and squares on a graph.</td>
</tr>
<tr>
<td>○</td>
<td>Draw ellipses and circles on a graph.</td>
</tr>
<tr>
<td></td>
<td>Draw lines on a graph.</td>
</tr>
<tr>
<td>○</td>
<td>Add marker symbols on a graph.</td>
</tr>
<tr>
<td></td>
<td>Draw a polyline (a series of connected lines) on a graph.</td>
</tr>
<tr>
<td></td>
<td>Draw polygons on a graph.</td>
</tr>
</tbody>
</table>

Example of using lines, text, markers, and rectangles in a graph

Suppose you create a graph for a presentation and want to highlight points of interest. This example assumes you have already created the graph found in Example of a simple time series plot.

Step 1: Draw the markers

1. Select the Marker tool, ○, from the Graph Annotation Tools toolbar.
2. Place the crosshairs at the juncture of 140 on the SalesB scale and 2000 Q4 on the time scale and click the mouse.
3. Repeat the first two steps to place markers at 160, 2001 Q4 and at 200, 2002 Q4.

Step 2: Draw the rectangle

1. Select the Rectangle tool, □, from the Graph Annotation Tools toolbar.
Place the crosshairs in the lower right corner of the data region.

Click and drag the crosshairs up and to the left to create a small rectangle, then release the mouse. Be sure not to obscure any of the data points.

Step 3: Insert text

1. Select the Text tool, ✒, from the Graph Annotation Tools toolbar.
2. Place the crosshairs at any corner of the rectangle you just created.
3. Click and drag the crosshairs to the opposite corner to create a text box the same dimensions as the rectangle, then release the mouse.
4. In **Text**, enter *Expected Fourth Quarter Sales*. Click **OK**.

Step 4: Draw lines from markers to rectangle

1. Select the Line tool, ⬤, from the Graph Annotation Tools toolbar.
2. Place the crosshairs at the upper left corner of the rectangle.
3. Click and drag the crosshairs to the first marker and release the mouse.
4. Repeat the last three steps to draw lines from the corner of the rectangle to each of the remaining markers.

Graph window output

Example of editing lines, text, markers, and rectangles in a graph

You want to edit the appearance of the annotation items in Example of using lines, text, markers, and rectangles in a graph.

Step 1: Edit the markers

1. Double-click a marker.
2. Choose the **Attributes** tab.
3. Under **Symbols**, click **Custom**.
4. From **Type**, choose the solid square, ■.
5. From **Color**, choose .
6. From **Size**, enter 2. Click **OK**.
7. Repeat the first six steps for the other two markers.
Step 2: Edit the lines
1. Double-click a line.
2. Choose the Attributes tab.
4. From Size, choose 2.
5. Under Arrow Style, in End, choose the thin arrow. Click OK.
6. Repeat the last five steps for the other two lines.

Step 3: Edit the text and rectangle
1. Double-click the rectangle.
2. Choose the Attributes tab.
3. Under Fill Pattern, choose Custom.
4. From Background color, choose .
6. From Size, choose 2 and click OK.
7. Double-click the text Expected Fourth Quarter Sales.
8. Choose the Font tab.
9. Under Style, check Bold. Click OK.

Graph window output

Example of using polylines, polygons, ellipses, and text in a graph
Suppose you create a graph for a presentation to stockholders in your company and you want to highlight points of interest. Investors are interested in the effect a new CEO has had on sales. This example assumes you have already created the graph found in Example of a simple time series plot.

Step 1: Create a triangle
1. Select the Polygon tool, from the Graph Annotation Tools toolbar.
2. Place the crosshairs at 100 on the SalesB scale and 2001 Q3 on the time scale and click.
3. Place the crosshairs at 100 on the SalesB scale and 2002 Q4 on the time scale and click.
4. Place the crosshairs at 130 on the SalesB scale and between the time-scale coordinates of the first two points, and double-click.
Customizing and Editing Graphs

Step 2: Add text to the triangle

1. Select the Text tool, \(\text{T} \), from the Graph Annotation Tools toolbar.
2. Place the crosshairs at the midpoint of the left side of the triangle.
3. Click and drag the crosshairs down and to the right to create a text box that is contained by the triangle, then release the mouse.
4. In the Add Text dialog box, enter Sales Under Beverly Dell, and click OK.

Step 3: Create an ellipse

1. Select the Ellipse tool, \(\text{O} \), from the Graph Annotation Tools toolbar.
2. Place the crosshairs in the upper left corner of the data region.
3. Click and drag the crosshairs to create an ellipse that extends right to 2001 Q2 on the time scale and down to 200 on the SalesB scale, then release the mouse. Be sure not to obscure any of the data points.

Step 4: Add text to the ellipse

1. Select the Text tool, \(\text{T} \), from the Graph Annotation Tools toolbar.
2. Place the crosshairs over the upper left of the ellipse.
3. Click and drag the crosshairs down and to the right to create a text box that is circumscribed by the ellipse, then release the mouse.
4. In the Add Text dialog box, enter Sales Under Myron Richards, and click OK.

Step 5: Draw a polyline around the first six points

1. Select the Polyline tool, \(\text{L} \), from the Graph Annotation Tools toolbar.
2. Place the crosshairs at 190, 2000 Q1 and click.
3. Place the crosshairs at 190, 2001 Q2 and click.
4. Place the crosshairs at 100, 2001 Q2 and click.
5. Place the crosshairs at 100, 2000 Q1 and click.
6. Place the crosshairs at 200, 2000 Q1 and double-click.

Step 6: Draw a polyline around the last six points

Repeat the six steps above, using these points:

- 140, 2002 Q4
- 140, 2001 Q3
- 240, 2001 Q3
- 240, 2002 Q4
- 120, 2002 Q4
Example of editing polylines, polygons, ellipses, and text in a graph
Suppose you created the graph found in Example of using polylines, polygons, ellipses, and text in a graph and want to edit the appearance of the annotation.

Step 1: Edit the ellipse
1 Double-click the ellipse.
2 Choose the Attributes tab.
3 Under Fill Pattern, click Custom.
4 From Background color, choose \(\square \). Click OK.

Step 2: Edit the text in the ellipse
1 Double-click the text Sales Under Myron Richards.
2 Choose the Font tab.
3 Under Style, check Bold.
4 From Size, choose 10.
5 From Color, choose \(\square \). Click OK.

Step 3: Edit the triangle
1 Double-click the triangle.
2 Choose the Attributes tab.
3 Under Fill Pattern, click Custom.
4 From Background color, choose \(\square \). Click OK.

Step 4: Edit the triangle’s text
1 Double-click the text Sales Under Beverly Dell.
2 Choose the Font tab.
3 Under Style, check Bold.
4 From Size, choose 10.
5 From Color, choose \(\square \). Click OK.

Step 5: Edit the polylines
1 Double-click a polyline.
Customizing and Editing Graphs

2. Choose the Attributes tab.
4. From Type, choose — — — —.
5. From Size, choose 2.
6. Under Arrow Style, in End, choose the thin arrow, . Click OK.
7. Repeat the last six steps for the other polyline.

Graph window output

Time Series Plot of SalesB

Selecting Groups and Single Items

You can select all points on a graph, a single group, or a single point. This method can also be used to select other graph objects:

- Other data representations such as boxes on boxplots or bars on bar charts
- Data labels and slice labels (all or one)
- Text in legends and output tables (entire legend/table or one line)
- Percentile line labels (all or one)

Note: Available editing options may depend on whether you have selected a group or a single item.

Click on a graph point once to select all points.
Click the point a second time to select only those points within the group.

Click a third time to select the individual point.

To select objects and text
There are three methods for selecting graph elements. Depending on the item, you may find one easier than another.

Manual selection
1. Click the selection tool on the Graph Editing toolbar.
2. Click the object on the graph.

Menu selection
1. Choose Editor > Select Item, and then choose from the list.

Toolbar selection
1. Choose the object from the Graph Editing toolbar drop-down list of editable items.

Selected objects have handles:

- A text string that has more than one line.
- Unrotated rectangles, squares, ellipses, and circles have handles at vertices (corners) and at line midpoints of a rectangle that surrounds them. For circles and ellipses, the vertices and endpoints are located on a rectangle that surrounds the object.
- Selected polygons have handles at each vertex.

When you select symbols, they display two handles. See Selecting groups and single items.

Text strings have handles at vertices (corners) and at line midpoints of a rectangle that surrounds them. See Selecting groups and single items.
Tip

If you cannot select an object, it may be because a second object is in front of it. Select the object in front, choose Editor > Send to Back, then select the first object. See Bring to Front and Send to Back.

Text

Creation

To add text

1 In the Graph Annotation Tools toolbar, click 📜.
2 Place the crosshairs at the point on the graph where you want one corner of the text box.
3 Click and drag the crosshairs to the opposite corner of the text box and release the mouse.
4 In Text, type the text. Click OK.

Example of using lines, text, markers, and rectangles in a graph

Suppose you create a graph for a presentation and want to highlight points of interest. This example assumes you have already created the graph found in Example of a simple time series plot.

Step 1: Draw the markers

1 Select the Marker tool, ⬤, from the Graph Annotation Tools toolbar.
2 Place the crosshairs at the juncture of 140 on the SalesB scale and 2000 Q4 on the time scale and click the mouse.
3 Repeat the first two steps to place markers at 160, 2001 Q4 and at 200, 2002 Q4.

Step 2: Draw the rectangle

1 Select the Rectangle tool, ☐, from the Graph Annotation Tools toolbar.
2 Place the crosshairs in the lower right corner of the data region.
3 Click and drag the crosshairs up and to the left to create a small rectangle, then release the mouse. Be sure not to obscure any of the data points.

Step 3: Insert text

1 Select the Text tool, 📜, from the Graph Annotation Tools toolbar.
2 Place the crosshairs at any corner of the rectangle you just created.
3 Click and drag the crosshairs to the opposite corner to create a text box the same dimensions as the rectangle, then release the mouse.
4 In Text, enter Expected Fourth Quarter Sales. Click OK.

Step 4: Draw lines from markers to rectangle

1 Select the Line tool, ⬤, from the Graph Annotation Tools toolbar.
2 Place the crosshairs at the upper left corner of the rectangle.
3 Click and drag the crosshairs to the first marker and release the mouse.
4 Repeat the last three steps to draw lines from the corner of the rectangle to each of the remaining markers.
Graph window output

Example of using polylines, polygons, ellipses, and text in a graph
Suppose you create a graph for a presentation to stockholders in your company and you want to highlight points of interest. Investors are interested in the effect a new CEO has had on sales. This example assumes you have already created the graph found in Example of a simple time series plot.

Step 1: Create a triangle
1. Select the Polygon tool, \(\square \), from the Graph Annotation Tools toolbar.
2. Place the crosshairs at 100 on the SalesB scale and 2001 Q3 on the time scale and click.
3. Place the crosshairs at 100 on the SalesB scale and 2002 Q4 on the time scale and click.
4. Place the crosshairs at 130 on the SalesB scale and between the time-scale coordinates of the first two points, and double-click.

Step 2: Add text to the triangle
1. Select the Text tool, \(\text{T} \), from the Graph Annotation Tools toolbar.
2. Place the crosshairs at the midpoint of the left side of the triangle.
3. Click and drag the crosshairs down and to the right to create a text box that is contained by the triangle, then release the mouse.
4. In the Add Text dialog box, enter Sales Under Beverly Dell, and click OK.

Step 3: Create an ellipse
1. Select the Ellipse tool, \(\bigcirc \), from the Graph Annotation Tools toolbar.
2. Place the crosshairs in the upper left corner of the data region.
3. Click and drag the crosshairs to create an ellipse that extends right to 2001 Q2 on the time scale and down to 200 on the SalesB scale, then release the mouse. Be sure not to obscure any of the data points.

Step 4: Add text to the ellipse
1. Select the Text tool, \(\text{T} \), from the Graph Annotation Tools toolbar.
2. Place the crosshairs over the upper left of the ellipse.
3. Click and drag the crosshairs down and to the right to create a text box that is circumscribed by the ellipse, then release the mouse.
4 In the Add Text dialog box, enter Sales Under Myron Richards, and click OK.

Step 5: Draw a polyline around the first six points

1 Select the Polyline tool, from the Graph Annotation Tools toolbar.
2 Place the crosshairs at 190, 2000 Q1 and click.
3 Place the crosshairs at 190, 2001 Q2 and click.
4 Place the crosshairs at 100, 2001 Q2 and click.
5 Place the crosshairs at 100, 2000 Q1 and click.
6 Place the crosshairs at 200, 2000 Q1 and double-click.

Step 6: Draw a polyline around the last six points

Repeat the six steps above, using these points:

- 140, 2002 Q4
- 140, 2001 Q3
- 240, 2001 Q3
- 240, 2002 Q4
- 120, 2002 Q4

Graph window output

Editing

Edit Text – Alignment

Select text > Editor > Edit Text > Alignment

Use to edit the angle of the text.

Dialog box items

Text angle: Enter a value from -360° to 360° to rotate the selected text.

To edit text alignment

1 Double-click the text.
2 Click the Alignment tab.
3 In Text angle, enter the value in degrees to rotate the text counterclockwise from the horizontal and click OK.
Edit Text – Font

Select text > Editor > Edit Text

Use to change the text font or its attributes.

Dialog box items

- **Font:** Choose a font.
- **Style**
 - **Bold:** Check to make the text bold.
 - **Italic:** Check to italicize the text.
 - **Underline:** Check to underline the text.
- **Size:** Enter a font size.
- **Color:** Choose a text color.
- **Preview:** Displays sample text with the selected attributes. This box does not accept input.

To edit text font

1. Double-click the text.
2. To change font attributes, do any of the following:
 - Under **Font**, type a font type or choose it from the list.
 - Under **Style**, check **Bold**, **Italic**, and/or **Underline**.
 - Under **Size**, type a font size or choose it from the list.
 - From **Color**, choose a text color.
3. Click **OK**.

Edit Text – Text

Select text > Editor > Edit Text

Use to edit text added to the active graph.

Dialog box item

- **Text:** Enter the text.

To edit text

1. Double-click the text box.
2. Choose the **Text** tab and in **Text**, type the text. Click **OK**.

Edit Annotation Item – Units

Select annotation item > Editor > Edit

By default, the command language generated by the Graph Annotation Tools Toolbar uses data units when specifying the coordinates of annotation items. You cannot change back to data units through this editing dialog box.

Dialog box items

- **Switch coordinate system from data units to figure units:** Check this box to change the coordinate system used to place the annotation items on the current graph from data units to figure units. After changing the coordinate system units, the annotation item will not be tied to the data as the data or scale changes.

To change units

1. Double-click the object created with the graph drawing toolbar.
2. Click the **Units** tab.
3. Check **Switch coordinate system from data units to figure units**. Click **OK**.
Customizing and Editing Graphs

Example of editing lines, text, markers, and rectangles in a graph
You want to edit the appearance of the annotation items in Example of using lines, text, markers, and rectangles in a graph.

Step 1: Edit the markers
1. Double-click a marker.
2. Choose the Attributes tab.
3. Under Symbols, click Custom.
4. From Type, choose the solid square.
5. From Color, choose .
6. From Size, enter 2. Click OK.
7. Repeat the first six steps for the other two markers.

Step 2: Edit the lines
1. Double-click a line.
2. Choose the Attributes tab.
4. From Size, choose 2.
5. Under Arrow Style, in End, choose the thin arrow, . Click OK.
6. Repeat the last five steps for the other two lines.

Step 3: Edit the text and rectangle
1. Double-click the rectangle.
2. Choose the Attributes tab.
3. Under Fill Pattern, choose Custom.
4. From Background color, choose .
6. From Size, choose 2 and click OK.
7. Double-click the text Expected Fourth Quarter Sales.
8. Choose the Font tab.
9. Under Style, check Bold. Click OK.

Graph window output

Time Series Plot of SalesB

SalesB

Quarter Year 2000 Q1 Q2 Q3 Q4 2001 Q1 Q2 Q3 Q4 2002 Q1 Q2 Q3 Q4

Expected Fourth Quarter Sales
Example of editing polylines, polygons, ellipses, and text in a graph

Suppose you created the graph found in Example of using polylines, polygons, ellipses, and text in a graph and want to edit the appearance of the annotation.

Step 1: Edit the ellipse
1. Double-click the ellipse.
2. Choose the Attributes tab.
3. Under Fill Pattern, click Custom.
4. From Background color, choose . Click OK.

Step 2: Edit the text in the ellipse
1. Double-click the text Sales Under Myron Richards.
2. Choose the Font tab.
3. Under Style, check Bold.
4. From Size, choose 10.
5. From Color, choose . Click OK.

Step 3: Edit the triangle
1. Double-click the triangle.
2. Choose the Attributes tab.
3. Under Fill Pattern, click Custom.
4. From Background color, choose . Click OK.

Step 4: Edit the triangle's text
1. Double-click the text Sales Under Beverly Dell.
2. Choose the Font tab.
3. Under Style, check Bold.
4. From Size, choose 10.
5. From Color, choose . Click OK.

Step 5: Edit the polylines
1. Double-click a polyline.
2. Choose the Attributes tab.
4. From Type, choose .
5. From Size, choose 2.
6. Under Arrow Style, in End, choose the thin arrow, . Click OK.
7. Repeat the last six steps for the other polyline.
Graph window output

![Time Series Plot of SalesB]

Rectangles

Creation

To create a rectangle

1. In the Graph Annotation Tools toolbar, click [rectangle tool].
2. Place the crosshairs at the point on the graph where you want one corner of the rectangle.
3. Click and drag the crosshairs to the opposite corner of the rectangle and release the mouse.

Tip To create a square, press and hold [Shift] after step 2.

Example of using lines, text, markers, and rectangles in a graph

Suppose you create a graph for a presentation and want to highlight points of interest. This example assumes you have already created the graph found in Example of a simple time series plot.

Step 1: Draw the markers

1. Select the Marker tool, [marker tool], from the Graph Annotation Tools toolbar.
2. Place the crosshairs at the juncture of 140 on the SalesB scale and 2000 Q4 on the time scale and click the mouse.
3. Repeat the first two steps to place markers at 160, 2001 Q4 and at 200, 2002 Q4.

Step 2: Draw the rectangle

1. Select the Rectangle tool, [rectangle tool], from the Graph Annotation Tools toolbar.
2. Place the crosshairs in the lower right corner of the data region.
3. Click and drag the crosshairs up and to the left to create a small rectangle, then release the mouse. Be sure not to obscure any of the data points.

Step 3: Insert text

1. Select the Text tool, [text tool], from the Graph Annotation Tools toolbar.
2. Place the crosshairs at any corner of the rectangle you just created.
3. Click and drag the crosshairs to the opposite corner to create a text box the same dimensions as the rectangle, then release the mouse.
4 In Text, enter Expected Fourth Quarter Sales. Click OK.

Step 4: Draw lines from markers to rectangle

1. Select the Line tool, from the Graph Annotation Tools toolbar.
2. Place the crosshairs at the upper left corner of the rectangle.
3. Click and drag the crosshairs to the first marker and release the mouse.
4. Repeat the last three steps to draw lines from the corner of the rectangle to each of the remaining markers.

Graph window output

Editing

Edit Polygons, Ellipses, or Rectangles—Attributes

Select annotation item > Editor > Edit

You can edit the attributes of a polygon, circle, or rectangle created with the Graph Annotation Tools toolbar.

Dialog box items

Fill Pattern

- **Automatic:** Choose to accept the default fill pattern.
- **Custom:** Choose change the default fill pattern.
 - **Type:** Choose a fill type.
 - **Background color:** Choose a background color.

Borders and Fill Lines

- **Automatic:** Choose to accept the default border and fill lines.
- **Custom:** Choose to change the default border and fill lines.
 - **Type:** Choose a border line type.
 - **Color:** Choose a border and fill line color.
 - **Size:** Choose a border line thickness.

To edit polygon, ellipse, or rectangle attributes

1. Double-click the item.
2. Under **Fill Pattern**, choose one of the following:
 - **Automatic** to accept the default fill pattern.
 - **Custom** to change the default fill pattern.
Customizing and Editing Graphs

- From **Type**, choose a fill type.
- From **Background color**, choose a background color.

3 Under **Borders and Fill Lines**, choose one of the following:
 - **Automatic** to accept the default border and fill lines.
 - **Custom** to change the default border and fill lines.
 - From **Type**, choose a border line type.
 - From **Color**, choose a border and fill line color.
 - From **Size**, choose a border line thickness.

4 Click **OK**.

Edit Annotation Item – Units

Select annotation item > **Editor** > **Edit**

By default, the command language generated by the Graph Annotation Tools Toolbar uses data units when specifying the coordinates of annotation items. You can change the units to figure units. You cannot change back to data units through this editing dialog box.

Dialog box items

Switch coordinate system from data units to figure units: Check this box to change the coordinate system used to place the annotation items on the current graph from data units to figure units. After changing the coordinate system units, the annotation item will not be tied to the data as the data or scale changes.

To change units

1. Double-click the object created with the graph drawing toolbar.
2. Click the **Units** tab.
3. Check **Switch coordinate system from data units to figure units**. Click **OK**.

Example of editing lines, text, markers, and rectangles in a graph

You want to edit the appearance of the annotation items in Example of using lines, text, markers, and rectangles in a graph.

Step 1: Edit the markers

1. Double-click a marker.
2. Choose the **Attributes** tab.
3. Under **Symbols**, click **Custom**.
4. From **Type**, choose the solid square, ■.
5. From **Color**, choose □.
6. From **Size**, enter 2. Click **OK**.
7. Repeat the first six steps for the other two markers.

Step 2: Edit the lines

1. Double-click a line.
2. Choose the **Attributes** tab.
3. Under **Lines**, choose **Custom**.
4. From **Size**, choose 2.
5. Under **Arrow Style**, in **End**, choose the thin arrow, ▸. Click **OK**.
6. Repeat the last five steps for the other two lines.

Step 3: Edit the text and rectangle

1. Double-click the rectangle.
2. Choose the **Attributes** tab.
3. Under **Fill Pattern**, choose **Custom**.
4 From **Background color**, choose □.
5 Under **Borders and Fill Lines**, choose **Custom**.
6 From **Size**, choose 2 and click **OK**.
7 Double-click the text **Expected Fourth Quarter Sales**.
8 Choose the **Font** tab.
9 Under **Style**, check **Bold**. Click **OK**.

Graph window output

![Time Series Plot of SalesB](image)

Ellipses

Creation

To create an ellipse

1 In the Graph Annotation Tools toolbar, click □
2 Place the crosshairs over the point on the open graph where you would like to place the ellipse.
3 Click and drag the crosshairs in any direction to size and shape the ellipse and release the mouse.

Tip To create a circle, press and hold [Shift] after step 2.

Example of using polylines, polygons, ellipses, and text in a graph

Suppose you create a graph for a presentation to stockholders in your company and you want to highlight points of interest. Investors are interested in the effect a new CEO has had on sales. This example assumes you have already created the graph found in Example of a simple time series plot.

Step 1: Create a triangle

1 Select the Polygon tool, ▶ from the Graph Annotation Tools toolbar.
2 Place the crosshairs at 100 on the SalesB scale and 2001 Q3 on the time scale and click.
3 Place the crosshairs at 100 on the SalesB scale and 2002 Q4 on the time scale and click.
4 Place the crosshairs at 130 on the SalesB scale and between the time-scale coordinates of the first two points, and double-click.

Step 2: Add text to the triangle

1 Select the Text tool, ☐ from the Graph Annotation Tools toolbar.
Customizing and Editing Graphs

2 Place the crosshairs at the midpoint of the left side of the triangle.
3 Click and drag the crosshairs down and to the right to create a text box that is contained by the triangle, then release
 the mouse.
4 In the Add Text dialog box, enter Sales Under Beverly Dell, and click OK.

Step 3: Create an ellipse

1 Select the Ellipse tool, from the Graph Annotation Tools toolbar.
2 Place the crosshairs in the upper left corner of the data region.
3 Click and drag the crosshairs to create an ellipse that extends right to 2001 Q2 on the time scale and down to 200 on
 the SalesB scale, then release the mouse. Be sure not to obscure any of the data points.

Step 4: Add text to the ellipse

1 Select the Text tool, from the Graph Annotation Tools toolbar.
2 Place the crosshairs over the upper left of the ellipse.
3 Click and drag the crosshairs down and to the right to create a text box that is circumscribed by the ellipse, then
 release the mouse.
4 In the Add Text dialog box, enter Sales Under Myron Richards, and click OK.

Step 5: Draw a polyline around the first six points

1 Select the Polyline tool, from the Graph Annotation Tools toolbar.
2 Place the crosshairs at 190, 2000 Q1 and click.
3 Place the crosshairs at 190, 2001 Q2 and click.
4 Place the crosshairs at 100, 2001 Q2 and click.
5 Place the crosshairs at 100, 2000 Q1 and click.
6 Place the crosshairs at 200, 2000 Q1 and double-click.

Step 6: Draw a polyline around the last six points

Repeat the six steps above, using these points:

- 140, 2002 Q4
- 140, 2001 Q3
- 240, 2001 Q3
- 240, 2002 Q4
- 120, 2002 Q4
Graph window output

Editing

Edit Polygons, Ellipses, or Rectangles—Attributes

Select annotation item > Editor > Edit

You can edit the attributes of a polygon, circle, or rectangle created with the Graph Annotation Tools toolbar.

Dialog box items

Fill Pattern
- **Automatic:** Choose to accept the default fill pattern.
- **Custom:** Choose change the default fill pattern.
 - **Type:** Choose a fill type.
 - **Background color:** Choose a background color.

Borders and Fill Lines
- **Automatic:** Choose to accept the default border and fill lines.
- **Custom:** Choose to change the default border and fill lines.
 - **Type:** Choose a border line type.
 - **Color:** Choose a border and fill line color.
 - **Size:** Choose a border line thickness.

To edit polygon, ellipse, or rectangle attributes

1. Double-click the item.
2. Under **Fill Pattern**, choose one of the following:
 - **Automatic** to accept the default fill pattern.
 - **Custom** to change the default fill pattern.
 - From **Type**, choose a fill type.
 - From **Background color**, choose a background color.
3. Under **Borders and Fill Lines**, choose one of the following:
 - **Automatic** to accept the default border and fill lines.
 - **Custom** to change the default border and fill lines.
 - From **Type**, choose a border line type.
 - From **Color**, choose a border and fill line color.
 - From **Size**, choose a border line thickness.
Customizing and Editing Graphs

4 Click OK.

Edit Annotation Item – Units
Select annotation item > Editor > Edit
By default, the command language generated by the Graph Annotation Tools Toolbar uses data units when specifying the coordinates of annotation items. You can change the units to figure units. You cannot change back to data units through this editing dialog box.

Dialog box items
Switch coordinate system from data units to figure units: Check this box to change the coordinate system used to place the annotation items on the current graph from data units to figure units. After changing the coordinate system units, the annotation item will not be tied to the data as the data or scale changes.

To change units
1 Double-click the object created with the graph drawing toolbar.
2 Click the Units tab.
3 Check Switch coordinate system from data units to figure units. Click OK.

Example of editing polylines, polygons, ellipses, and text in a graph
Suppose you created the graph found in Example of using polylines, polygons, ellipses, and text in a graph and want to edit the appearance of the annotation.

Step 1: Edit the ellipse
1 Double-click the ellipse.
2 Choose the Attributes tab.
3 Under Fill Pattern, click Custom.
4 From Background color, choose . Click OK.

Step 2: Edit the text in the ellipse
1 Double-click the text Sales Under Myron Richards.
2 Choose the Font tab.
3 Under Style, check Bold.
4 From Size, choose 10.
5 From Color, choose . Click OK.

Step 3: Edit the triangle
1 Double-click the triangle.
2 Choose the Attributes tab.
3 Under Fill Pattern, click Custom.
4 From Background color, choose . Click OK.

Step 4: Edit the triangle's text
1 Double-click the text Sales Under Beverly Dell.
2 Choose the Font tab.
3 Under Style, check Bold.
4 From Size, choose 10.
5 From Color, choose . Click OK.

Step 5: Edit the polylines
1 Double-click a polyline.
2 Choose the Attributes tab.
3 Under Lines, choose Custom.
4 From **Type**, choose — — — — — —.
5 From **Size**, choose 2.
6 Under **Arrow Style**, in **End**, choose the thin arrow, — — — — — —. Click **OK**.
7 Repeat the last six steps for the other polyline.

Graph window output

![Time Series Plot of SalesB](image)

Lines

Creation

To create a line

1 In the Graph Annotation Tools toolbar, click □
2 Place the crosshairs at the point on the graph where you want to begin the line.
3 Click and drag the crosshairs to the point where you want to end the line and release the mouse.

Tip To draw a line along the nearest 45 degree angle, press and hold [Shift] while dragging the crosshairs.

Example of using lines, text, markers, and rectangles in a graph

Suppose you create a graph for a presentation and want to highlight points of interest. This example assumes you have already created the graph found in Example of a simple time series plot.

Step 1: Draw the markers

1 Select the Marker tool, ○ from the Graph Annotation Tools toolbar.
2 Place the crosshairs at the juncture of 140 on the SalesB scale and 2000 Q4 on the time scale and click the mouse.
3 Repeat the first two steps to place markers at 160, 2001 Q4 and at 200, 2002 Q4.

Step 2: Draw the rectangle

1 Select the Rectangle tool, ■ from the Graph Annotation Tools toolbar.
2 Place the crosshairs in the lower right corner of the data region.
3 Click and drag the crosshairs up and to the left to create a small rectangle, then release the mouse. Be sure not to obscure any of the data points.

Step 3: Insert text
Customizing and Editing Graphs

1. Select the Text tool, T, from the Graph Annotation Tools toolbar.
2. Place the crosshairs at any corner of the rectangle you just created.
3. Click and drag the crosshairs to the opposite corner to create a text box the same dimensions as the rectangle, then release the mouse.
4. In Text, enter Expected Fourth Quarter Sales. Click OK.

Step 4: Draw lines from markers to rectangle

1. Select the Line tool, L, from the Graph Annotation Tools toolbar.
2. Place the crosshairs at the upper left corner of the rectangle.
3. Click and drag the crosshairs to the first marker and release the mouse.
4. Repeat the last three steps to draw lines from the corner of the rectangle to each of the remaining markers.

Graph window output

![Time Series Plot of SalesB]

Editing

Edit Lines or Polylines – Attributes

Select annotation item > Editor > Edit

You can edit the attributes of a line created with the Graph annotation Tools toolbar.

Dialog box items

Lines

- **Automatic**: Choose to accept the default line attributes.
- **Custom**: Choose to change the line attributes.
 - **Type**: Choose a line type.
 - **Color**: Choose a line color.
 - **Size**: Choose a line thickness.

Arrow Style

- **Begin**: Choose an arrow style from the drop-down list to begin the line.
- **End**: Choose an arrow style from the drop-down list to end the line.

To edit line or polyline attributes

1. Double-click the line or polyline.
2 Click the **Attributes** tab.

3 Under **Lines**, choose one of the following:
 - **Automatic** to accept the default line type and color.
 - **Custom** to change the line type and color.
 - In **Type**, choose a line type.
 - In **Color**, choose a color.
 - In **Size**, choose a line thickness.

4 Under **Arrow Style**, do the following:
 - In **Begin**, choose an arrow style.
 - In **End**, choose an arrow style.

5 Click **OK**.

Edit Annotation Item – Units

Select annotation item > *Editor* > *Edit*

By default, the command language generated by the Graph Annotation Tools Toolbar uses data units when specifying the coordinates of annotation items. You can change the units to figure units. You cannot change back to data units through this editing dialog box.

Dialog box items

Switch coordinate system from data units to figure units: Check this box to change the coordinate system used to place the annotation items on the current graph from data units to figure units. After changing the coordinate system units, the annotation item will not be tied to the data as the data or scale changes.

To change units

1 Double-click the object created with the graph drawing toolbar.
2 Click the **Units** tab.
3 Check **Switch coordinate system from data units to figure units**. Click **OK**.

Example of editing lines, text, markers, and rectangles in a graph

You want to edit the appearance of the annotation items in Example of using lines, text, markers, and rectangles in a graph.

Step 1: Edit the markers

1 Double-click a marker.
2 Choose the **Attributes** tab.
3 Under **Symbols**, click **Custom**.
4 From **Type**, choose the solid square, ■.
5 From **Color**, chooseiliated.
6 From **Size**, enter 2. Click **OK**.
7 Repeat the first six steps for the other two markers.

Step 2: Edit the lines

1 Double-click a line.
2 Choose the **Attributes** tab.
3 Under **Lines**, choose **Custom**.
4 From **Size**, choose 2.
5 Under **Arrow Style**, in **End**, choose the thin arrow, →. Click **OK**.
6 Repeat the last five steps for the other two lines.

Step 3: Edit the text and rectangle

1 Double-click the rectangle.
Customizing and Editing Graphs

2 Choose the Attributes tab.
3 Under Fill Pattern, choose Custom.
4 From Background color, choose .
5 Under Borders and Fill Lines, choose Custom.
6 From Size, choose 2 and click OK.
7 Double-click the text Expected Fourth Quarter Sales.
8 Choose the Font tab.
9 Under Style, check Bold. Click OK.

Graph window output

![Time Series Plot of SalesB](image)

Marker Creation

To create markers

1 In the Graph Annotation Tools toolbar, click .
2 Place the crosshairs at the point on the graph where you want to place the marker and click.

Example of using lines, text, markers, and rectangles in a graph

Suppose you create a graph for a presentation and want to highlight points of interest. This example assumes you have already created the graph found in Example of a simple time series plot.

Step 1: Draw the markers

1 Select the Marker tool, from the Graph Annotation Tools toolbar.
2 Place the crosshairs at the juncture of 140 on the SalesB scale and 2000 Q4 on the time scale and click the mouse.
3 Repeat the first two steps to place markers at 160, 2001 Q4 and at 200, 2002 Q4.

Step 2: Draw the rectangle

1 Select the Rectangle tool, from the Graph Annotation Tools toolbar.
2 Place the crosshairs in the lower right corner of the data region.
3 Click and drag the crosshairs up and to the left to create a small rectangle, then release the mouse. Be sure not to obscure any of the data points.
Step 3: Insert text

1. Select the Text tool, \(\text{T} \), from the Graph Annotation Tools toolbar.
2. Place the crosshairs at any corner of the rectangle you just created.
3. Click and drag the crosshairs to the opposite corner to create a text box the same dimensions as the rectangle, then release the mouse.
4. In Text, enter Expected Fourth Quarter Sales. Click OK.

Step 4: Draw lines from markers to rectangle

1. Select the Line tool, \(\text{\textline} \), from the Graph Annotation Tools toolbar.
2. Place the crosshairs at the upper left corner of the rectangle.
3. Click and drag the crosshairs to the first marker and release the mouse.
4. Repeat the last three steps to draw lines from the corner of the rectangle to each of the remaining markers.

Graph window output

Edit Marker – Attributes

Select marker > Editor > Edit Marker

You can edit the attributes of a marker created with the Graph Annotation Tools toolbar.

Dialog box items

Automatic: Choose to accept the default marker attributes.
Custom: Choose to change the default marker attributes.
Type: Choose a marker type. The default is a circle.
Color: Choose a color. The default is black.
Size: Enter a symbol size. The default is 1.

To edit marker attributes

1. Double-click on the marker.
2. Under Symbols, choose Custom.
3. From Type, choose a marker type.
4. From Color, choose a color.
Customizing and Editing Graphs

5 In Size, enter a symbol size. Click OK.

Edit Annotation Item – Units

Select annotation item > Editor > Edit

By default, the command language generated by the Graph Annotation Tools Toolbar uses data units when specifying the coordinates of annotation items. You can change the units to figure units. You cannot change back to data units through this editing dialog box.

Dialog box items

Switch coordinate system from data units to figure units: Check this box to change the coordinate system used to place the annotation items on the current graph from data units to figure units. After changing the coordinate system units, the annotation item will not be tied to the data as the data or scale changes.

To change units

1 Double-click the object created with the graph drawing toolbar.
2 Click the Units tab.
3 Check *Switch coordinate system from data units to figure units.* Click OK.

Example of editing lines, text, markers, and rectangles in a graph

You want to edit the appearance of the annotation items in Example of using lines, text, markers, and rectangles in a graph.

Step 1: Edit the markers

1 Double-click a marker.
2 Choose the Attributes tab.
3 Under Symbols, click Custom.
4 From Type, choose the solid square, ■.
5 From Color, choose □.
6 From Size, enter 2. Click OK.
7 Repeat the first six steps for the other two markers.

Step 2: Edit the lines

1 Double-click a line.
2 Choose the Attributes tab.
3 Under Lines, choose Custom.
4 From Size, choose 2.
5 Under Arrow Style, in End, choose the thin arrow, →. Click OK.
6 Repeat the last five steps for the other two lines.

Step 3: Edit the text and rectangle

1 Double-click the rectangle.
2 Choose the Attributes tab.
3 Under Fill Pattern, choose Custom.
4 From Background color, choose □.
5 Under Borders and Fill Lines, choose Custom.
6 From Size, choose 2 and click OK.
7 Double-click the text *Expected Fourth Quarter Sales.*
8 Choose the Font tab.
9 Under Style, check Bold. Click OK.
Polyline

Creation

To create a polyline

1 In the Graph Annotation Tools toolbar, click

2 Place the crosshairs at the point on the graph where you want to begin the polyline and click.

3 Place the crosshairs at the point where you want the first vertex of the polyline and click.

4 Repeat step 3 for each vertex in your polyline.

5 Place the crosshairs at the end-point of your polyline. To complete the polyline, do one of the following:
 • Double-click.
 • Click and select a different tool from the toolbar.

Tip To draw a side along the nearest 45 degree angle, press and hold [Shift] while placing the vertex.

Example of using polylines, polygons, ellipses, and text in a graph

Suppose you create a graph for a presentation to stockholders in your company and you want to highlight points of interest. Investors are interested in the effect a new CEO has had on sales. This example assumes you have already created the graph found in Example of a simple time series plot.

Step 1: Create a triangle

1 Select the Polygon tool, \[\text{[Polyline]}\] from the Graph Annotation Tools toolbar.

2 Place the crosshairs at 100 on the SalesB scale and 2001 Q3 on the time scale and click.

3 Place the crosshairs at 100 on the SalesB scale and 2002 Q4 on the time scale and click.

4 Place the crosshairs at 130 on the SalesB scale and between the time-scale coordinates of the first two points, and double-click.

Step 2: Add text to the triangle

1 Select the Text tool, \[\text{[Text]}\] from the Graph Annotation Tools toolbar.

2 Place the crosshairs at the midpoint of the left side of the triangle.

3 Click and drag the crosshairs down and to the right to create a text box that is contained by the triangle, then release the mouse.
Step 3: Create an ellipse

1. Select the Ellipse tool, \(\text{Ellipse} \), from the Graph Annotation Tools toolbar.
2. Place the crosshairs in the upper left corner of the data region.
3. Click and drag the crosshairs to create an ellipse that extends right to 2001 Q2 on the time scale and down to 200 on the SalesB scale, then release the mouse. Be sure not to obscure any of the data points.

Step 4: Add text to the ellipse

1. Select the Text tool, \(\text{Text} \), from the Graph Annotation Tools toolbar.
2. Place the crosshairs over the upper left of the ellipse.
3. Click and drag the crosshairs down and to the right to create a text box that is circumscribed by the ellipse, then release the mouse.
4. In the Add Text dialog box, enter Sales Under Myron Richards, and click OK.

Step 5: Draw a polyline around the first six points

1. Select the Polyline tool, \(\text{Polyline} \), from the Graph Annotation Tools toolbar.
2. Place the crosshairs at 190, 2000 Q1 and click.
3. Place the crosshairs at 190, 2001 Q2 and click.
4. Place the crosshairs at 100, 2001 Q2 and click.
5. Place the crosshairs at 100, 2000 Q1 and click.
6. Place the crosshairs at 200, 2000 Q1 and double-click.

Step 6: Draw a polyline around the last six points

Repeat the six steps above, using these points:
- 140, 2002 Q4
- 140, 2001 Q3
- 240, 2001 Q3
- 240, 2002 Q4
- 120, 2002 Q4

Graph window output
Editing

Edit Lines or Polylines – Attributes

Select annotation item > Editor > Edit

You can edit the attributes of a line created with the Graph annotation Tools toolbar.

Dialog box items

Lines

Automatic: Choose to accept the default line attributes.

Custom: Choose to change the line attributes.

- Type: Choose a line type.
- Color: Choose a line color.
- Size: Choose a line thickness.

Arrow Style

- Begin: Choose an arrow style from the drop-down list to begin the line.
- End: Choose an arrow style from the drop-down list to end the line.

To edit line or polyline attributes

1. Double-click the line or polyline.
2. Click the Attributes tab.
3. Under Lines, choose one of the following:
 - Automatic to accept the default line type and color.
 - Custom to change the line type and color.
 - In Type, choose a line type.
 - In Color, choose a color.
 - In Size, choose a line thickness.
4. Under Arrow Style, do the following:
 - In Begin, choose an arrow style.
 - In End, choose an arrow style.
5. Click OK.

Edit Annotation Item – Units

Select annotation item > Editor > Edit

By default, the command language generated by the Graph Annotation Tools Toolbar uses data units when specifying the coordinates of annotation items. You can change the units to figure units. You cannot change back to data units through this editing dialog box.

Dialog box items

Switch coordinate system from data units to figure units: Check this box to change the coordinate system used to place the annotation items on the current graph from data units to figure units. After changing the coordinate system units, the annotation item will not be tied to the data as the data or scale changes.

To change units

1. Double-click the object created with the graph drawing toolbar.
2. Click the Units tab.
3. Check Switch coordinate system from data units to figure units. Click OK.

Example of editing polylines, polygons, ellipses, and text in a graph

Suppose you created the graph found in Example of using polylines, polygons, ellipses, and text in a graph and want to edit the appearance of the annotation.
Customizing and Editing Graphs

Step 1: Edit the ellipse
1. Double-click the ellipse.
2. Choose the Attributes tab.
3. Under Fill Pattern, click Custom.
4. From Background color, choose \(\square \). Click OK.

Step 2: Edit the text in the ellipse
1. Double-click the text Sales Under Myron Richards.
2. Choose the Font tab.
3. Under Style, check Bold.
4. From Size, choose 10.
5. From Color, choose \(\square \). Click OK.

Step 3: Edit the triangle
1. Double-click the triangle.
2. Choose the Attributes tab.
3. Under Fill Pattern, click Custom.
4. From Background color, choose \(\square \). Click OK.

Step 4: Edit the triangle's text
1. Double-click the text Sales Under Beverly Dell.
2. Choose the Font tab.
3. Under Style, check Bold.
4. From Size, choose 10.
5. From Color, choose \(\square \). Click OK.

Step 5: Edit the polylines
1. Double-click a polyline.
2. Choose the Attributes tab.
4. From Type, choose — — — —.
5. From Size, choose 2.
6. Under Arrow Style, in End, choose the thin arrow, \(\Rightarrow \). Click OK.
7. Repeat the last six steps for the other polyline.
Graph window output

Time Series Plot of SalesB

Polygon

Creation

To create a polygon

1. In the Graph Annotation Tools toolbar, click .
2. Place the crosshairs over the point on the open graph where you would like to begin the polygon and click.
3. Place the crosshairs over the point where you would like to place the first vertex of the polygon and click.
4. Repeat step 3 for each vertex in the polygon.
5. Place the crosshairs over the end point of the polygon. To complete the polygon, do one of the following:
 - Double-click.
 - Click and select a different tool from the toolbar.

Tip: To draw a side along the nearest 45 degree angle, press and hold [Shift] while placing the vertex.

Example of using polylines, polygons, ellipses, and text in a graph

Suppose you create a graph for a presentation to stockholders in your company and you want to highlight points of interest. Investors are interested in the effect a new CEO has had on sales. This example assumes you have already created the graph found in Example of a simple time series plot.

Step 1: Create a triangle

1. Select the Polygon tool, from the Graph Annotation Tools toolbar.
2. Place the crosshairs at 100 on the SalesB scale and 2001 Q3 on the time scale and click.
3. Place the crosshairs at 100 on the SalesB scale and 2002 Q4 on the time scale and click.
4. Place the crosshairs at 130 on the SalesB scale and between the time-scale coordinates of the first two points, and double-click.

Step 2: Add text to the triangle

1. Select the Text tool, from the Graph Annotation Tools toolbar.
2. Place the crosshairs at the midpoint of the left side of the triangle.
3. Click and drag the crosshairs down and to the right to create a text box that is contained by the triangle, then release the mouse.
4 In the **Add Text** dialog box, enter *Sales Under Beverly Dell*, and click **OK**.

Step 3: Create an ellipse

1. Select the Ellipse tool, ![Ellipse tool](image), from the Graph Annotation Tools toolbar.
2. Place the crosshairs in the upper left corner of the data region.
3. Click and drag the crosshairs to create an ellipse that extends right to 2001 Q2 on the time scale and down to 200 on the *SalesB* scale, then release the mouse. Be sure not to obscure any of the data points.

Step 4: Add text to the ellipse

1. Select the Text tool, ![Text tool](image), from the Graph Annotation Tools toolbar.
2. Place the crosshairs over the upper left of the ellipse.
3. Click and drag the crosshairs down and to the right to create a text box that is circumscribed by the ellipse, then release the mouse.
4. In the **Add Text** dialog box, enter *Sales Under Myron Richards*, and click **OK**.

Step 5: Draw a polyline around the first six points

1. Select the Polyline tool, ![Polyline tool](image), from the Graph Annotation Tools toolbar.
2. Place the crosshairs at 190, 2000 Q1 and click.
3. Place the crosshairs at 190, 2001 Q2 and click.
4. Place the crosshairs at 100, 2001 Q2 and click.
5. Place the crosshairs at 100, 2000 Q1 and click.
6. Place the crosshairs at 200, 2000 Q1 and double-click.

Step 6: Draw a polyline around the last six points

Repeat the six steps above, using these points:

- 140, 2002 Q4
- 140, 2001 Q3
- 240, 2001 Q3
- 240, 2002 Q4
- 120, 2002 Q4

Graph window output

![Time Series Plot of SalesB](image)
Editing

Edit Polygons, Ellipses, or Rectangles—Attributes

Select annotation item > Editor > Edit

You can edit the attributes of a polygon, circle, or rectangle created with the Graph Annotation Tools toolbar.

Dialog box items

Fill Pattern

- **Automatic**: Choose to accept the default fill pattern.
- **Custom**: Choose change the default fill pattern.
 - **Type**: Choose a fill type.
 - **Background color**: Choose a background color.

Borders and Fill Lines

- **Automatic**: Choose to accept the default border and fill lines.
- **Custom**: Choose to change the default border and fill lines.
 - **Type**: Choose a border line type.
 - **Color**: Choose a border and fill line color.
 - **Size**: Choose a border line thickness.

To edit polygon, ellipse, or rectangle attributes

1. Double-click the item.
2. Under **Fill Pattern**, choose one of the following:
 - **Automatic** to accept the default fill pattern.
 - **Custom** to change the default fill pattern.
 - From **Type**, choose a fill type.
 - From **Background color**, choose a background color.
3. Under **Borders and Fill Lines**, choose one of the following:
 - **Automatic** to accept the default border and fill lines.
 - **Custom** to change the default border and fill lines.
 - From **Type**, choose a border line type.
 - From **Color**, choose a border and fill line color.
 - From **Size**, choose a border line thickness.
4. Click **OK**.

Edit Annotation Item—Units

Select annotation item > Editor > Edit

By default, the command language generated by the Graph Annotation Tools Toolbar uses data units when specifying the coordinates of annotation items. You can change the units to figure units. You cannot change back to data units through this editing dialog box.

Dialog box items

Switch coordinate system from data units to figure units: Check this box to change the coordinate system used to place the annotation items on the current graph from data units to figure units. After changing the coordinate system units, the annotation item will not be tied to the data as the data or scale changes.

To change units

1. Double-click the object created with the graph drawing toolbar.
2. Click the **Units** tab.
3. Check **Switch coordinate system from data units to figure units**. Click **OK**.
Suppose you created the graph found in Example of using polylines, polygons, ellipses, and text in a graph and want to edit the appearance of the annotation.

Step 1: Edit the ellipse
1. Double-click the ellipse.
2. Choose the **Attributes** tab.
3. Under **Fill Pattern**, click **Custom**.
4. From **Background color**, choose . Click **OK**.

Step 2: Edit the text in the ellipse
1. Double-click the text *Sales Under Myron Richards*.
2. Choose the **Font** tab.
3. Under **Style**, check **Bold**.
4. From **Size**, choose 10.
5. From **Color**, choose . Click **OK**.

Step 3: Edit the triangle
1. Double-click the triangle.
2. Choose the **Attributes** tab.
3. Under **Fill Pattern**, click **Custom**.
4. From **Background color**, choose . Click **OK**.

Step 4: Edit the triangle’s text
1. Double-click the text *Sales Under Beverly Dell*.
2. Choose the **Font** tab.
3. Under **Style**, check **Bold**.
4. From **Size**, choose 10.
5. From **Color**, choose . Click **OK**.

Step 5: Edit the polylines
1. Double-click a polyline.
2. Choose the **Attributes** tab.
3. Under **Lines**, choose **Custom**.
4. From **Type**, choose — — — —.
5. From **Size**, choose 2.
6. Under **Arrow Style**, in **End**, choose the thin arrow, . Click **OK**.
7. Repeat the last six steps for the other polyline.
Resizing and Reshaping Graph Objects

Resizing and Reshaping Graph Objects
You can perform many actions on graphical objects. Rectangles rotated to angles other than 0, 90, 180, or 270 become polygons, which do not have midpoint handles. If you want to reshape a rotated rectangle, first rotate it to an angle of 0, 90, 180, or 270, then reshape the rectangle and rotate it again. Choose any of the following:

To resize squares or circles
To reshape rectangles or ellipses
To reshape polygons, polylines, and lines
To reshape text areas on graphs
To rotate a graph object left
To rotate a graph object right
To rotate a graph object to a custom angle
To move annotation

To resize squares or circles
1 Select one of the corner handles.
2 While holding down [Shift], click and drag the handle until the object reaches the size you want.
Tip If you do not hold down [Shift], the square or circle turns into a rectangle or ellipse, respectively. Turn it back into a square or circle by holding down [Shift] and dragging a corner handle.

To reshape rectangles or ellipses
1 Do one of the following:
 • To adjust either width or height, but not both at once, drag a handle at a midpoint.
 • To adjust width and height at the same time, drag a corner handle.
Tip Press [Shift] before reshaping a rectangle or ellipse to convert the object to a square or circle, respectively.
Note Rectangles or ellipses rotated to angles other than 0, 90, 180, or 270 cannot be reshaped in rotated form. First unrotate the object, reshape it, then rotate it again.

To reshape polygons, polylines, and lines
1 Select the polygon, polyline, or line.
2 Click and drag one of the handles to the desired location.

Note If you press [Shift] after you click the mouse button, you can draw or move objects along the nearest 45-degree line. This is especially helpful when you want to draw or move an object only horizontally, only vertically, or an equal distance horizontally and vertically.

To reshape text areas
1 Select the text box.
2 Click and drag a handle to where you want the text box to end.

When you resize a text box, you really only resize its width, not the font size. The text fills as many lines as necessary in the given width.

To move annotation
1 Click the selection tool, ![selection tool]
2 Do one of the following:
 - Using the mouse, click and drag the object or text string to its new location. Do **not** drag a handle, which would resize the object.
 - Using the keyboard, do the following:

<table>
<thead>
<tr>
<th>To move...</th>
<th>Press...</th>
</tr>
</thead>
<tbody>
<tr>
<td>One pixel in any direction</td>
<td>Any arrow key</td>
</tr>
<tr>
<td>Five pixels in any direction</td>
<td>[Shift] + any arrow key</td>
</tr>
<tr>
<td>Ten pixels in any direction</td>
<td>[Control] + any arrow key</td>
</tr>
<tr>
<td>Fifty pixels in any direction</td>
<td>[Shift] + [Control] + any arrow key</td>
</tr>
</tbody>
</table>
Embedded Graph Editor

Embedded Graph Editor Overview

A Minitab graph that has been copied into another OLE application retains most of its editing properties.

Methods for copying a Minitab graph to an outside application

The way you copy a graph into an outside application determines how you edit it. You can create a:

- Editable copy that is identical to the original graph at the time it was copied.
- Picture, bitmap, or enhanced metafile picture copy that cannot be edited with the embedded graph editor.

If you choose to edit the copied graph within the outside application, the Embedded Graph Editor Toolbar appears and the application's menu items change to include Minitab graph editing functions.

Embedded Graph Editor Toolbar

The Embedded Graph Editor toolbar is a combination of menu items from other Minitab toolbars. These items work the same way they do within Minitab. To show this toolbar, double click the graph. To return to the application's standard menus and leave embedded graph editing, click outside the graph.

<table>
<thead>
<tr>
<th>Toolbar item</th>
<th>Use to...</th>
<th>Toolbar item</th>
<th>Use to...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut an object</td>
<td></td>
<td>Add a square or rectangle</td>
</tr>
<tr>
<td></td>
<td>Copy an object</td>
<td></td>
<td>Add a circle or ellipse</td>
</tr>
<tr>
<td></td>
<td>Paste an object</td>
<td></td>
<td>Add a line</td>
</tr>
<tr>
<td></td>
<td>Undo an action</td>
<td></td>
<td>Add a marker</td>
</tr>
<tr>
<td></td>
<td>Redo an action</td>
<td></td>
<td>Add a polyline</td>
</tr>
<tr>
<td></td>
<td>Put the graph in select mode</td>
<td></td>
<td>Add a polygon</td>
</tr>
<tr>
<td></td>
<td>Add text</td>
<td></td>
<td>Edit the selected item</td>
</tr>
</tbody>
</table>
Embedded Graph Editor Menu Items

If a graph created in Minitab is edited in an outside application, that application's menu choices change to reflect graph editing options. These items work the same way they do within Minitab.

<table>
<thead>
<tr>
<th>Edit menu becomes...</th>
<th>Editor menu...</th>
<th>Help menu becomes...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undo / Redo</td>
<td>Edit...</td>
<td>Help Topics</td>
</tr>
<tr>
<td>Delete / Cut / Copy / Paste</td>
<td>Graph Options:</td>
<td>About Minitab</td>
</tr>
<tr>
<td></td>
<td>Matrix Plot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marginal Plot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bar Chart</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pie Chart</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contour Plot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3D Scatterplot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3D Surface Plot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insert Text and Shapes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annotation:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Duplicate Annotation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bring to Front/Send to Back</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotate Left/Rotate Right</td>
<td></td>
</tr>
</tbody>
</table>

To create an editable copy of a graph
1. In Minitab, right-click the graph you wish to copy and choose Copy Graph.
2. In the outside application, choose Edit > Paste.

To create an uneditable copy of a graph
1. In Minitab, right-click the graph you wish to copy and choose Copy Graph.
2. In the outside application, choose Edit > Paste Special.
4. Under As, choose one of the following:
 - Picture
 - Bitmap
 - Picture (Enhanced Metafile)
5. Click OK.

To edit a copied graph in an outside application
1. In the outside application, double click the graph or right-click the graph and choose Graph Object > Edit.
2. Edit the graph.
3. Click outside the graph.
Index

A
Add (Editor menu) ... 254, 295
Annotation (Editor menu) 276, 277, 278, 279
Area (graph data display) 7, 8, 19, 25, 26, 27, 28, 30
Area (dialog box option) 7, 8, 19
Editing .. 25, 26, 27, 28, 30
Axes and Ticks ... 95
Creation .. 95, 97, 98
Editing ... 121, 123, 124, 141, 142, 143, 148, 149, 150
Axis Labels .. 121, 122, 123, 124
Editing ... 121, 122, 124

B
Bar (graph data display) 8, 15, 17, 34, 35, 36
Bar (dialog box item) 8, 15, 17
Editing ... 34, 35, 36
Binning ... 26, 35, 63, 85, 113
Boundary ... 269
Positions for contour plot 269
Box (graph data display) 13, 41, 42, 43
Box (dialog box item) 13
Editing ... 41, 42, 43
Brush (Editor menu) 242, 243, 244, 246, 247, 248, 285, 286, 287, 289, 290, 291
Color ... 289
Creating indicator variables 246, 289
Features .. 243, 286
Identifier variables 247, 290
Palette - showing and hiding 246, 289
Setting ID variables 247, 290
By Variables 198, 199

C
Calendar units 106, 107
Categorical scales
 Editing ... 141, 142, 143, 147, 148, 149, 150
 Circle ... 323
Clock units ... 106, 107
Connect Line (graph data display) 7, 12, 13, 15, 17, 18, 50, 51, 52, 53
 Connect Line (dialog box option) 7, 12, 13, 15, 17, 18
 Editing ... 60, 51, 52, 53
Contour levels 269
Contour Lines (graph data display) 19, 58, 59, 60
 Contour Lines (dialog box item) 19
 Editing ... 58, 59, 60
Coordinates .. 177
Copy Command Language (Editor menu) 272, 274
Copying .. 276

Copying and pasting
 Graph objects 276
Create Indicator Variable (Editor menu) 246, 289
Crosshairs (Editor menu) 250, 291

D
Data Display ... 5, 24
 Data Display (dialog box option) 5
 Editing ... 24
Data Fits (graphs) 217, 227
 Displaying 217
 Editing ... 227
Data Labels 157, 158, 160, 165, 166
 Data Labels (dialog box option) 157, 158, 160
 Editing ... 165, 166
Data Options (dialog box option) 235, 237, 239
 Frequency 239
 Group Options 237
 Subset ... 235
Data Region 176, 177
 Editing ... 182, 183
Data units ... 177
Date/time data 106, 110
Date/time stamp 106, 108, 110
Deleting ... 305
Dendrogram scales 126
Distribution Fit (graphs) 218, 228
 Distribution Fit (dialog box option) 218
 Editing ... 228
Dots (graph data display) 9, 62, 63, 64
 Editing ... 62, 63, 64
Drawing objects on graphs 307
Duplicate Graph (Editor menu) 272, 274

E
Edit (Editor menu) 249, 283
Editing ... 249, 283
 Graphs ... 249, 283
 Text on graphs 260, 301, 307, 309, 314, 315, 320, 323, 327, 330, 333, 337
 Editor menu 241
 Ellipse ... 323
Embedded Graph Editor 343
Excluding data in a graph 236
Figure Region 175
 Editing ... 179, 180
Footnote .. 154, 170, 171
 Editing ... 170, 171
Customizing and Editing Graphs

Titles and Footnotes (dialog box option) 154
Frequency .. 239

G
Graph Annotation Tools Toolbar 260, 301, 307, 314, 320, 323, 327, 330, 333, 337
Graph brushing .. 242, 285
Graph editing .. 110, 164, 165, 166, 167, 168, 170, 171, 177, 241
Graph Editing Toolbar .. 282
Graph Options (Editor menu) 36, 51, 69, 73, 87, 269, 270
Graph Region .. 174
 Editing .. 178
Graph toolbars .. 282, 306, 307
Graphs folder
 High-resolution ... 214, 271
Gridlines
 Editing .. 127, 128
Group Options ... 237
H
Histogram Labels (Marginal Plot) 162, 165
 Editing .. 165
 Histogram Labels (dialog box option) 162
I
ID variables in brushing ... 247, 290
Identifier variables .. 247, 290
Indicator variables .. 246, 289
Interval Bar (graph data display) 15, 65, 66
 Editing .. 65, 66
 Interval Bar (dialog box item) .. 15
L
Labels (graphs) ... 153, 164
Layout Tool ... 214, 215, 271
 Layout Tool (Editor menu) 214, 271
Legend Region ... 173, 184, 185, 186, 190, 191
Levels ... 269
 Contour plots ... 269
Line ... 327
Live linking graphs .. 279
Lowess Smoother (graphs) 224, 230, 231
 Editing .. 230, 231
 Lowess Smoother (dialog box option) 224
M
Make Similar Graph (Editor menu) 275
Marker ... 330
Multiple Graphs (dialog box option) 193, 195, 196, 197, 198, 199
 By Variables ... 198, 199
 Multiple Variables .. 195, 196, 197
 Multiple variables .. 195, 196, 197

O
Objects on graphs ... 341
 Selecting ... 248, 249, 283, 284, 312, 313
 ODBC .. 281
Output tables ... 173, 186, 188, 189, 190, 191
Overlapping points .. 268
Overlay ... 203
Overview
 Brushing .. 242, 285
 Editing graphs ... 241
P
Panel (Editor menu) 204, 205, 206, 207, 208, 209, 210, 211, 213, 264, 265, 266
Paneling ... 201
Percentile lines
 Creation .. 104, 219
 Editing .. 132, 133
 Pie (graph data display) ... 68, 69
 Editing .. 68, 69
 Plant Flag (Editor menu) ... 251, 292
 Polygon ... 337
 Polyline .. 333
Primary scale ... 136
Project Lines (graph data display) 7, 8, 17, 18, 20, 22, 71, 72, 73, 74
 Editing .. 71, 72, 73, 74
 Project Lines (dialog box option) 7, 8, 17, 18, 20, 22
R
Rectangle ... 320
Reference lines
 Creation .. 102
 Editing .. 128, 129, 130
 Region coordinate system 177
 Regions .. 173
 Regression Fit (graphs) .. 232, 233
 Editing .. 232, 233
 Regression Fit (dialog box option) 226
 Reshaping and resizing graph objects 341
 Resizing and reshaping graph objects 341
 Rotate 3D Graph .. 306
 Rotate Left (Editor menu) 278
 Rotate Right (Editor menu) 278
S
Scale (dialog box option) ... 94
 Axes and Ticks ... 95, 97, 98
 Editing .. 110
 Gridlines .. 101
 Percentile lines .. 104
 Reference lines .. 102
 Time ... 107, 110